Chemical Analysis of Pollen by FT-Raman and FTIR Spectroscopies.

Front Plant Sci

Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.

Published: March 2020

Pollen studies are important for the assessment of present and past environment, including biodiversity, sexual reproduction of plants and plant-pollinator interactions, monitoring of aeroallergens, and impact of climate and pollution on wild communities and cultivated crops. Although information on chemical composition of pollen is of importance in all of those research areas, pollen chemistry has been rarely measured due to complex and time-consuming analyses. Vibrational spectroscopies, coupled with multivariate data analysis, have shown great potential for rapid chemical characterization, identification and classification of pollen. This study, comprising 219 species from all principal taxa of seed plants, has demonstrated that high-quality Raman spectra of pollen can be obtained by Fourier transform (FT) Raman spectroscopy. In combination with Fourier transform infrared spectroscopy (FTIR), FT-Raman spectroscopy is obtaining comprehensive information on pollen chemistry. Presence of all the main biochemical constituents of pollen, such as proteins, lipids, carbohydrates, carotenoids and sporopollenins, have been identified and detected in the spectra, and the study shows approaches to measure relative and absolute content of these constituents. The results show that FT-Raman spectroscopy has clear advantage over standard dispersive Raman measurements, in particular for measurement of pollen samples with high pigment content. FT-Raman spectra are strongly biased toward chemical composition of pollen wall constituents, namely sporopollenins and pigments. This makes Raman spectra complementary to FTIR spectra, which over-represent chemical constituents of the grain interior, such as lipids and carbohydrates. The results show a large variability in pollen chemistry for families, genera and even congeneric species, revealing wide range of reproductive strategies, from storage of nutrients to variation in carotenoids and phenylpropanoids. The information on pollen's chemical patterns for major plant taxa should be of outstanding value for various studies in plant biology and ecology, including aerobiology, palaeoecology, forensics, community ecology, plant-pollinator interactions, and climate effects on plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136416PMC
http://dx.doi.org/10.3389/fpls.2020.00352DOI Listing

Publication Analysis

Top Keywords

pollen chemistry
12
pollen
11
plant-pollinator interactions
8
chemical composition
8
composition pollen
8
raman spectra
8
fourier transform
8
ft-raman spectroscopy
8
lipids carbohydrates
8
chemical
6

Similar Publications

Diabetes mellitus (DM) and cancer are multifactorial diseases with significant health consequences, and their relationship with aging makes them particularly challenging. Epidemiological data suggests that individuals with DM are more susceptible to certain cancers. This study examined the bioactive properties of Hypericum scabrum extracts, including methanol, hexane, and others, focusing on their inhibitory effects on key enzymes associated with DM and neurodegenerative diseases, such as acetylcholinesterase, butyrylcholinesterase, α-amylase, and α-glucosidase.

View Article and Find Full Text PDF
Article Synopsis
  • Many pesticides used in agriculture can accumulate in the environment, exposing bees to multiple substances simultaneously, which is not commonly studied in research.
  • The study focused on the chronic effects of pesticide mixtures on honey bee worker's hemolymph, using concentrations found in their natural environment.
  • Results showed that acetamiprid decreased urea levels significantly, glyphosate had little effect, and tebuconazole, despite being considered safe, caused notable changes in several biochemical markers, indicating a need for further research on fungicides' impact on bees.
View Article and Find Full Text PDF

The bioaccumulation of pesticides in honeybee products (HBPs) should be studied for a number of reasons. The presence of pesticides in HBPs can provide new data on the risk related to the use of pesticides and their role in bee colony losses. Moreover, the degree of contamination of HBPs can lower their quality, weaken their beneficial properties, and, in consequence, may endanger human health.

View Article and Find Full Text PDF

Since the imbalance between free radicals and antioxidants in the body plays a significant role in the physiology of common, often dangerous diseases, an emphasis is placed on enriching the daily diet with compounds characterized by antioxidant activity. Good sources of natural antioxidants are bee products such as honey, bee pollen, bee bread and propolis, and the best path for introducing the latter products into the diet is mixing them with honey. However, the characteristics of bee product mixtures are not yet fully understood.

View Article and Find Full Text PDF

Phytochemical and Bioactivity Evaluation of Bee Pollen and Androecia of , , and Species.

Antioxidants (Basel)

December 2024

Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, Kayisdagi Cad., Atasehir, 34755 Istanbul, Türkiye.

Qualitative and quantitative differences in the chemical composition between bee pollen originated from (Türkiye and Slovenia), spp. (Türkiye and Slovenia), and spp. (Türkiye) and androecia of , , and (apetalous trees) were evaluated for the first time by new high-performance thin-layer chromatography (HPTLC) and ultra-performance liquid chromatography (UPLC) methods using marker compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!