The Potential Role of Gut Peptide Hormones in Autism Spectrum Disorder.

Front Cell Neurosci

Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.

Published: March 2020

Gut peptide hormones are one group of secretory factors produced from gastrointestinal endocrine cells with potent functions in modulating digestive functions. In recent decades, they have been found across different brain regions, many of which are involved in autism-related social, emotional and cognitive deficits. Clinical studies have revealed possible correlation between those hormones and autism spectrum disorder pathogenesis. In animal models, gut peptide hormones modulate neurodevelopment, synaptic transmission and neural plasticity, explaining their behavioral relevance. This review article will summarize major findings from both clinical and basic research showing the role of gut peptide hormones in mediating autism-related neurological functions, and their potential implications in autism pathogenesis. The pharmaceutical value of gut hormones in alleviating autism-associated behavioral syndromes will be discussed to provide new insights for future drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136424PMC
http://dx.doi.org/10.3389/fncel.2020.00073DOI Listing

Publication Analysis

Top Keywords

gut peptide
16
peptide hormones
16
role gut
8
hormones autism
8
autism spectrum
8
spectrum disorder
8
hormones
6
gut
5
potential role
4
peptide
4

Similar Publications

Background: Recent research indicates that the intestinal microbial community, known as the gut microbiota, may play a crucial role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). To understand this relationship, this study used a comprehensive bibliometric analysis to explore and analyze the currently little-known connection between gut microbiota and NAFLD, as well as new findings and possible future pathways in this field.

Aim: To provide an in-depth analysis of the current focus issues and research developments on the interaction between gut microbiota and NAFLD.

View Article and Find Full Text PDF

Multi-omics analysis reveals the anti-fatigue mechanism of BCAA-enriched egg white peptides: the role of the gut-muscle axis.

Food Funct

January 2025

Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.

Bioactive peptides rich in branched-chain amino acids (BCAAs) are an effective way to alleviate fatigue conditions, but the deep mechanism remains unclear. This study investigated the anti-fatigue effect of branched-chain amino acid-enriched egg white peptides (BEWPs) through the gut-muscle axis by gut bacteria and untargeted metabolomic analyses. The results demonstrated that BEWPs enhanced exercise endurance and strength by also promoting gastrocnemius development in mice.

View Article and Find Full Text PDF

There are limited studies on the improvement of leaky gut with minor inflammation associated with various diseases. To explore the therapeutic potential of Lactiplantibacillus plantarum 22 A-3, a member of the Lactobacillus species, in addressing a leaky gut. Lactiplantibacillus plantarum 22 A-3 was administered to a leaky gut mice model with low dextran sulfate sodium concentrations.

View Article and Find Full Text PDF

Polysaccharide Modulates Characteristic Bacteria and Metabolites, Improving the Immune Function of Healthy Mice.

Nutrients

January 2025

State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.

Objectives: Polysaccharides from are known to have several bioactive effects. Previous studies have found that low-molecular-weight polysaccharide (GP1) is degraded by and promotes the production of beneficial bacteria and metabolites, which improves immune disorder and intestinal injury, and then enhances the body's immune regulation ability. However, the immune regulation effect of GP1 on a healthy body has not been studied.

View Article and Find Full Text PDF

Neohesperidin Mitigates High-Fat-Diet-Induced Colitis In Vivo by Modulating Gut Microbiota and Enhancing SCFAs Synthesis.

Int J Mol Sci

January 2025

National Engineering Laboratory for Rice and By-Products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha 410004, China.

Previous research has consistently shown that high-fat diet (HFD) consumption can lead to the development of colonic inflammation. Neohesperidin (NHP), a naturally occurring flavanone glycoside in citrus fruits, has anti-inflammatory properties. However, the efficacy and mechanism of NHP in countering prolonged HFD-induced inflammation remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!