Intrinsically disordered proteins are now widely accepted to play crucial roles in biological functions. Identification of signatures of intrinsic disorder is one of the key steps towards building a proper repertoire for their occurrence in proteomes. In this work, systematic computational synthesis of a library of all possible (3368400) dipeptides, tripeptides, tetrapeptides and pentapeptides using the natural 20 amino acids allowed us to identify 36 unique tetrapeptides present exclusively in intrinsically disordered proteins and absent in the complete primary sequence space of naturally occurring structured proteins. Further, out of more than 530000 known naturally occurring primary sequences without any structural information, 1349 sequences contain the above identified unique signatures of intrinsic disorder. These sequences, having cellular functions varying from housekeeping to metabolic to transport, more than double the number of the currently known intrinsically disordered proteins. On similar lines, we report that 26577 pentapeptide signatures exclusive to intrinsically disordered proteins, and absent in naturally occurring structured proteins, identify ∼50% of more than half-a-million curated protein sequences without structural information to be intrinsically disordered. The results reported are a major leap forward in exploring functional manifestations of intrinsically disordered proteins.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2020.1756410 | DOI Listing |
Soft Matter
January 2025
Computation-based Science and Technology Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus.
This work presents an investigation of the influence of poly(-isopropylacrylamide) (PNIPAM) polymer on the structural dynamics of intrinsically disordered alpha-synuclein (α-syn) protein, exploring the formation and intricate features of the resulting α-syn/PNIPAM complexes. Using atomistic molecular dynamics (MD) simulations, our study analyzes the impact of initial configuration, polymer molecular weight, and protein mutations on the α-syn and the α-syn/PNIPAM complex. Atomistic simulations, of a few μs, of the protein/polymer complex reveal crucial insights into molecular interactions within the complex, emphasizing a delicate balance of forces governing its stability and structural evolution.
View Article and Find Full Text PDFACS Phys Chem Au
January 2025
Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States.
In-droplet hydrogen/deuterium exchange (HDX)-mass spectrometry (MS) experiments have been conducted for peptides of highly varied conformational type. A new model is presented that combines the use of protection factors (PF) from molecular dynamics (MD) simulations with intrinsic HDX rates ( ) to obtain a structure-to-reactivity calibration curve. Using the model, the relationship of peptide structural flexibility and HDX reactivity for different peptides is elucidated.
View Article and Find Full Text PDFCell Rep Phys Sci
November 2024
Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA.
Graph neural networks (GNNs) have emerged as powerful tools for representation learning. Their efficacy depends on their having an optimal underlying graph. In many cases, the most relevant information comes from specific subgraphs.
View Article and Find Full Text PDFPRX Life
June 2024
Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
Biomolecular condensates are dynamic intracellular entities defined by their sequence- and composition-encoded material properties. During aging, these properties can change dramatically, potentially leading to pathological solidlike states, the mechanisms of which remain poorly understood. Recent experiments reveal that the aging of condensates involves a complex interplay of solvent depletion, strengthening of sticker links, and the formation of rigid structural segments such as beta fibrils.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
Taking into account involvement of the RNA-binding proteins in regulation of activity of poly(ADP-ribose) polymerase 1 (PARP1), a key factor of DNA repair, the effect of the intrinsically disordered protein Sam68 (Src-associated substrate during mitosis of 68 kDa) on catalytic activity of this enzyme was studied. Plasmid containing coding sequence of the Sam68 protein was obtained. Using the obtained construct, conditions for the Sam68 expression in cells were optimized and procedure for protein purification was developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!