A Systematic Review on Transplantation Studies of the Retinal Pigment Epithelium in Animal Models.

Int J Mol Sci

Department of Clinical Genetics, Amsterdam University Medical Centers (AUMC), Location Academic Medical Center (AMC), University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands.

Published: April 2020

Unlabelled: The retinal pigment epithelium (RPE) and the adjacent light-sensitive photoreceptors form a single functional unit lining the back of the eye. Both cell layers are essential for normal vision. RPE degeneration is usually followed by photoreceptor degeneration and vice versa. There are currently almost no effective therapies available for RPE disorders such as Stargardt disease, specific types of retinitis pigmentosa, and age-related macular degeneration. RPE replacement for these disorders, especially in later stages of the disease, may be one of the most promising future therapies. There is, however, no consensus regarding the optimal RPE source, delivery strategy, or the optimal experimental host in which to test RPE replacement therapy. Multiple RPE sources, delivery methods, and recipient animal models have been investigated, with variable results. So far, a systematic evaluation of the (variables influencing) efficacy of experimental RPE replacement parameters is lacking. Here we investigate the effect of RPE transplantation on vision and vision-based behavior in animal models of retinal degenerated diseases. In addition, we aim to explore the effect of RPE source used for transplantation, the method of intervention, and the animal model which is used.

Methods: In this study, we systematically identified all publications concerning transplantation of RPE in experimental animal models targeting the improvement of vision (e.g., outcome measurements related to the morphology or function of the eye). A variety of characteristics, such as species, gender, and age of the animals but also cell type, number of cells, and other intervention characteristics were extracted from all studies. A risk of bias analysis was performed as well. Subsequently, all references describing one of the following outcomes were analyzed in depth in this systematic review: a-, b-, and c-wave amplitudes, vision-based, thickness analyses based on optical coherence tomography (OCT) data, and transplant survival based on scanning laser ophthalmoscopy (SLO) data. Meta-analyses were performed on the a- and b-wave amplitudes from electroretinography (ERG) data as well as data from vision-based behavioral assays.

Results: original research articles met the inclusion criteria after two screening rounds. Overall, most studies were categorized as unclear regarding the risk of bias, because many experimental details were poorly reported. Twenty-three studies reporting one or more of the outcome measures of interest were eligible for either descriptive (thickness analyses based on OCT data; = 2) or meta-analyses. RPE transplantation significantly increased ERG a-wave (Hedges' g 1.181 (0.471-1.892), = 6) and b-wave (Hedges' g 1.734 (1.295-2.172), = 42) amplitudes and improved vision-based behavior (Hedges' g 1.018 (0.826-1.209), = 96). Subgroup analyses revealed a significantly increased effect of the use of young and adolescent animals compared to adult animals. Moreover, transplanting more cells (in the range of 10 versus in the range of 10) resulted in a significantly increased effect on vision-based behavior as well. The origin of cells mattered as well. A significantly increased effect was found on vision-based behavior when using ARPE-19 and OpRegen RPE.

Conclusions: This systematic review shows that RPE transplantation in animal models for retinal degeneration significantly increases a- and b- wave amplitudes and improves vision-related behavior. These effects appear to be more pronounced in young animals, when the number of transplanted cells is larger and when ARPE-19 and OpRegen RPE cells are used. We further emphasize that there is an urgent need for improving the reporting and methodological quality of animal experiments, to make such studies more comparable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7216090PMC
http://dx.doi.org/10.3390/ijms21082719DOI Listing

Publication Analysis

Top Keywords

animal models
20
vision-based behavior
16
rpe
14
systematic review
12
rpe replacement
12
rpe transplantation
12
retinal pigment
8
pigment epithelium
8
rpe source
8
models retinal
8

Similar Publications

Acanthoside B attenuates NLRP3-mediated pyroptosis and ulcerative colitis through inhibition of tAGE/RAGE pathway.

Allergol Immunopathol (Madr)

January 2025

Department of Neurofunction, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China;

Acanthoside B (Aca.B), a principal bioactive compound extracted from , exhibits superior anti-inflammatory capacity. Ulcerative colitis is a nonspecific inflammatory bowel disease with unknown etiology.

View Article and Find Full Text PDF

Objective: The objective of this systematic review and meta-analysis was to assess the efficacy of melatonin in drug- or contrast-induced AKI in preclinical and clinical studies.

Methods: PubMed, Embase, Scopus, Web of Science (WOS), the Cochrane Database of Systematic Reviews (CDSR), and clinical trials.GOV from the beginning until August 1, 2024.

View Article and Find Full Text PDF

Testing for developmental toxicity is an integral part of chemical regulations. The applied tests are laborious and costly and require a large number of vertebrate test animals. To reduce animal numbers and associated costs, the zebrafish embryo was proposed as an alternative model.

View Article and Find Full Text PDF

Introduction: Osteoarthritis (OA) is a chronic degenerative joint disorder characterized by an imbalance in chondrocyte metabolism. Ferroptosis has been implicated in the pathogenesis of OA. The role of Sirt1, a deacetylase, in mediating deacetylation during ferroptosis in OA chondrocytes remains underexplored.

View Article and Find Full Text PDF

Recent advances in embryology have shown that the sister blastomeres of 2-cell mouse and human embryos differ reciprocally in potency. An open question is whether the blastomeres became different as opposed to originating as different. Here we wanted to test two conflicting models: one proposing that each blastomere contains both animal and vegetal materials in balanced proportions because the plane of first cleavage runs close to the animal-vegetal axis of the fertilized oocyte; and the other model proposing that each blastomere contains variable proportions of animal and vegetal materials because the plane of the first cleavage can vary depending on the topology of fertilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!