Transfer Learning via Deep Neural Networks for Implant Fixture System Classification Using Periapical Radiographs.

J Clin Med

Department of Oral and Maxillofacial Radiology, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan 50610, Korea.

Published: April 2020

In the absence of accurate medical records, it is critical to correctly classify implant fixture systems using periapical radiographs to provide accurate diagnoses and treatments to patients or to respond to complications. The purpose of this study was to evaluate whether deep neural networks can identify four different types of implants on intraoral radiographs. In this study, images of 801 patients who underwent periapical radiographs between 2005 and 2019 at Yonsei University Dental Hospital were used. Images containing the following four types of implants were selected: Brånemark Mk TiUnite, Dentium Implantium, Straumann Bone Level, and Straumann Tissue Level. SqueezeNet, GoogLeNet, ResNet-18, MobileNet-v2, and ResNet-50 were tested to determine the optimal pre-trained network architecture. The accuracy, precision, recall, and F1 score were calculated for each network using a confusion matrix. All five models showed a test accuracy exceeding 90%. SqueezeNet and MobileNet-v2, which are small networks with less than four million parameters, showed an accuracy of approximately 96% and 97%, respectively. The results of this study confirmed that convolutional neural networks can classify the four implant fixtures with high accuracy even with a relatively small network and a small number of images. This may solve the inconveniences associated with unnecessary treatments and medical expenses caused by lack of knowledge about the exact type of implant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230319PMC
http://dx.doi.org/10.3390/jcm9041117DOI Listing

Publication Analysis

Top Keywords

neural networks
12
periapical radiographs
12
deep neural
8
implant fixture
8
classify implant
8
types implants
8
transfer learning
4
learning deep
4
networks
4
implant
4

Similar Publications

This paper systematically evaluates saliency methods as explainability tools for convolutional neural networks trained to diagnose glaucoma using simplified eye fundus images that contain only disc and cup outlines. These simplified images, a methodological novelty, were used to relate features highlighted in the saliency maps to the geometrical clues that experts consider in glaucoma diagnosis. Despite their simplicity, these images retained sufficient information for accurate classification, with balanced accuracies ranging from 0.

View Article and Find Full Text PDF

Prediction of Thermodynamic Properties of C-Based Fullerenols Using Machine Learning.

J Chem Theory Comput

January 2025

Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.

Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.

View Article and Find Full Text PDF

Semantical text understanding holds significant importance in natural language processing (NLP). Numerous datasets, such as Quora Question Pairs (QQP), have been devised for this purpose. In our previous study, we developed a Siamese Convolutional Neural Network (S-CNN) that achieved an F1 score of 82.

View Article and Find Full Text PDF

In this comprehensive analysis of Chile's air quality dynamics spanning 2016 to 2021, the utilization of data from the National Air Quality Information System (SINCA) and its network of monitoring stations was undertaken. Quintero, Puchuncaví, and Coyhaique were the focal points of this study, with the primary objective being the construction of predictive models for sulfur dioxide (SO2), fine particulate matter (PM2.5), and coarse particulate matter (PM10).

View Article and Find Full Text PDF

Significance: Optimal meibography utilization and interpretation are hindered due to poor lid presentation, blurry images, or image artifacts and the challenges of applying clinical grading scales. These results, using the largest image dataset analyzed to date, demonstrate development of algorithms that provide standardized, real-time inference that addresses all of these limitations.

Purpose: This study aimed to develop and validate an algorithmic pipeline to automate and standardize meibomian gland absence assessment and interpretation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!