Latency Compensated Visual-Inertial Odometry for Agile Autonomous Flight.

Sensors (Basel)

Faculty of Aerospace Engineering, The Pennsylvania State University, 229 Hammond Building, University Park, PA 16802, USA.

Published: April 2020

In visual-inertial odometry (VIO), inertial measurement unit (IMU) dead reckoning acts as the dynamic model for flight vehicles while camera vision extracts information about the surrounding environment and determines features or points of interest. With these sensors, the most widely used algorithm for estimating vehicle and feature states for VIO is an extended Kalman filter (EKF). The design of the standard EKF does not inherently allow for time offsets between the timestamps of the IMU and vision data. In fact, sensor-related delays that arise in various realistic conditions are at least partially unknown parameters. A lack of compensation for unknown parameters often leads to a serious impact on the accuracy of VIO systems and systems like them. To compensate for the uncertainties of the unknown time delays, this study incorporates parameter estimation into feature initialization and state estimation. Moreover, computing cross-covariance and estimating delays in online temporal calibration correct residual, Jacobian, and covariance. Results from flight dataset testing validate the improved accuracy of VIO employing latency compensated filtering frameworks. The insights and methods proposed here are ultimately useful in any estimation problem (e.g., multi-sensor fusion scenarios) where compensation for partially unknown time delays can enhance performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218848PMC
http://dx.doi.org/10.3390/s20082209DOI Listing

Publication Analysis

Top Keywords

latency compensated
8
visual-inertial odometry
8
partially unknown
8
unknown parameters
8
accuracy vio
8
unknown time
8
time delays
8
compensated visual-inertial
4
odometry agile
4
agile autonomous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!