Diabetic nephropathy (DN) is one of the leading causes of mortality in diabetic patients. Long non-coding RNA zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) plays a crucial role in the development of various diseases, including DN. However, the molecular mechanism of ZEB1-AS1 in DN pathogenesis remains elusive. An in vitro DN model was established by treating HK-2 cells with high glucose (HG). Quantitative polymerase chain reaction (qRT-PCR) was utilized to detect the expression levels of ZEB1-AS1, microRNA-216a-5p (miR-216a-5p), and bone morphogenetic protein 7 (BMP7). Western blot assay was used to evaluate the protein levels of BMP7, epithelial-to-mesenchymal transition (EMT)-related proteins, and fibrosis markers. Additionally, the interaction among ZEB1-AS1, miR-216a-5p, and BMP7 was predicted by MiRcode (http://www.mircode.org) and starBase 2.0 (omics_06102, omicX), and confirmed by luciferase reporter assay. ZEB1-AS1 and BMP7 were down-regulated, while miR-216a-5p was highly expressed in kidney tissues of DN patients. Consistently, HG treatment decreased the levels of ZEB1-AS1 and BMP7, whereas HG increased miR-216a-5p expression in HK-2 cells in a time-dependent manner. ZEB1-AS1 upregulation inhibited HG-induced EMT and fibrogenesis. Furthermore, ZEB1-AS1 directly targeted miR-216a-5p, and overexpression of miR-216a-5p restored the inhibitory effects of ZEB1-AS1 overexpression on EMT and fibrogenesis. BMP7 was negatively targeted by miR-216a-5p. In addition, ZEB1-AS1 suppressed HG-induced EMT and fibrogenesis by regulating miR-216a-5p and BMP-7. lncRNA ZEB1-AS1 inhibited high glucose-induced EMT and fibrogenesis via regulating miR-216a-5p/BMP7 axis in diabetic nephropathy, providing a potential target for DN therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162581PMC
http://dx.doi.org/10.1590/1414-431X20209288DOI Listing

Publication Analysis

Top Keywords

emt fibrogenesis
20
fibrogenesis regulating
12
diabetic nephropathy
12
zeb1-as1
11
lncrna zeb1-as1
8
high glucose-induced
8
glucose-induced emt
8
regulating mir-216a-5p/bmp7
8
mir-216a-5p/bmp7 axis
8
axis diabetic
8

Similar Publications

Organophosphate flame retardant triphenyl phosphate (TPhP) induced colonic fibrosis by bringing about epithelial-mesenchymal transition.

Ecotoxicol Environ Saf

February 2025

Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China. Electronic address:

Intestinal fibrosis is often observed in inflammatory bowel disease (IBD) and seriously affects intestinal health. Our previous study identified that triphenyl phosphate (TPhP), one kind of frequently used organophosphate flame retardants (OPFRs), induced IBD-like features in colon. Herein, we firstly observed extracellular matrix deposition in colon tissues, indicative of appearance of colonic fibrosis.

View Article and Find Full Text PDF

Fibrosis is the final common pathway leading to end stage chronic kidney disease (CKD). However, the function of protein palmitoylation in renal fibrosis and underlying mechanisms remain unclear. In this study, we observed that the expression of the palmitoyltransferase ZDHHC18 was significantly elevated in unilateral ureteral obstruction (UUO) and folic acid (FA)-induced renal fibrosis mouse models, and was significantly upregulated in the fibrotic kidneys of chronic kidney disease patients.

View Article and Find Full Text PDF

The present review was undertaken to clarify the potential role of the lysyl oxidase (Lox) family of enzymes in delaying graft dysfunction. Delayed graft failure is a well-known event that occurs post-transplantation period. Ischemia and trauma to the graft tissue before or during the operation procedures are likely to be the most important etiological causes of this complication.

View Article and Find Full Text PDF

Opioid System and Epithelial-Mesenchymal Transition.

Pharmaceuticals (Basel)

January 2025

Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland.

Opioids are a challenging class of drugs due to their dual role. They alleviate pain, but also pose a risk of dependency, or trigger constipation, particularly in cancer patients, who require the more potent painkillers in more advanced stages of the disease, closely linked to pain resulting from general inflammation, bone metastases, and primary or secondary tumour outgrowth-related nerve damage. Clinicians' vigilance considering treatment with opioids is necessary, bearing in mind extensive data accumulated over decades that have reported the contribution of opioids to immunosuppression, tumour progression, or impaired tissue regeneration, either following opioid use during surgical tumour resection and post-surgical pain treatment, or as a result of other diseases like diabetes, where chronic wounds healing constitutes a challenge.

View Article and Find Full Text PDF

Background/aims: Epithelial-to-mesenchymal transition (EMT) plays a crucial role in hepatic fibrogenesis and liver repair in chronic liver disease. Our research highlights the antifibrotic potential of placenta-derived mesenchymal stem cells (PD-MSCs) and the role of phosphatase of regenerating liver-1 (PRL-1) in promoting liver regeneration.

Methods: We evaluated the efficacy of PD-MSCs overexpressing PRL-1 (PD-MSCsPRL-1) in a bile duct ligation (BDL)-induced rat injury model, focusing on their ability to regulate EMT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!