Akt-targeted therapy as a promising strategy to overcome drug resistance in breast cancer - A comprehensive review from chemotherapy to immunotherapy.

Pharmacol Res

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China. Electronic address:

Published: June 2020

AI Article Synopsis

  • Breast cancer, particularly Triple-Negative Breast Cancer (TNBC), is the most common cancer in women, and recent treatments include a combo of chemotherapy and immunotherapy, specifically utilizing Atezolizumab and paclitaxel for patients with PD-L1 expression.
  • Resistance to chemotherapy is a significant issue, with drugs like lapatinib and tamoxifen often becoming ineffective, making the understanding of drug resistance mechanisms such as Akt signaling crucial.
  • Akt is a key player in both drug resistance and cancer cell metabolism, with ongoing clinical trials for Akt inhibitors like ipatasertib and uprosertib that aim to reduce cancer cell growth and improve treatment outcomes in TNBC.

Article Abstract

Breast cancer is the most frequently occurring cancer in women. Chemotherapy in combination with immunotherapy has been used to treat breast cancer. Atezolizumab targeting the protein programmed cell death-ligand (PD-L1) in combination with paclitaxel was recently approved by the Food and Drug Administration (FDA) for Triple-Negative Breast Cancer (TNBC), the most incurable type of breast cancer. However, the use of such drugs is restricted by genotype and is effective only for those TNBC patients expressing PD-L1. In addition, resistance to chemotherapy with drugs such as lapatinib, geftinib, and tamoxifen can develop. In this review, we address chemoresistance in breast cancer and discuss Akt as the master regulator of drug resistance and several oncogenic mechanisms in breast cancer. Akt not only directly interacts with the mitogen-activated protein (MAP) kinase signaling pathway to affect PD-L1 expression, but also has crosstalk with Notch and Wnt/β-catenin signaling pathways involved in cell migration and breast cancer stem cell integrity. In this review, we discuss the effects of tyrosine kinase inhibitors on Akt activation as well as the mechanism of Akt signaling in drug resistance. Akt also has a crucial role in mitochondrial metabolism and migrates into mitochondria to remodel breast cancer cell metabolism while also functioning in responses to hypoxic conditions. The Akt inhibitors ipatasertib, capivasertib, uprosertib, and MK-2206 not only suppress cancer cell proliferation and metastasis, but may also inhibit cytokine regulation and PD-L1 expression. Ipatasertib and uprosertib are undergoing clinical investigation to treat TNBC. Inhibition of Akt and its regulators can be used to control breast cancer progression and also immunosuppression, while discovery of additional compounds that target Akt and its modulators could provide solutions to resistance to chemotherapy and immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2020.104806DOI Listing

Publication Analysis

Top Keywords

breast cancer
40
drug resistance
12
cancer
12
breast
10
chemotherapy immunotherapy
8
resistance chemotherapy
8
akt
8
pd-l1 expression
8
cancer cell
8
resistance
5

Similar Publications

In women globally, breast cancer ranks as the second most frequent cause of cancer-related deaths, making up about 25% of female cancer cases, which is pretty standard in affluent countries. Breast cancer is divided into subtypes based on aggressive, genetic and stage. The precise cause of the problem is still unknown.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with a high recurrence rate. A new therapeutic intervention is urgently needed to combat this lethal subtype. The identification of biomarkers is also crucial for improving outcomes in TNBC.

View Article and Find Full Text PDF

Novel Ru(II) Complexes as Type-I/-II Photosensitizers for Multimodal Hypoxia-Tolerant Chemo-Photodynamic/Immune Therapy.

Mol Pharm

January 2025

School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China.

Photodynamic therapy (PDT) is increasingly regarded as an attractive approach for cancer treatment due to its advantages of low invasiveness, minimal side effects, and high efficiency. Here, two novel Ru(II) complexes , were designed and synthesized by coordinating phenanthroline and biquinoline ligands with Ru(II) center, and their chemo-photodynamic therapy and immunotherapy were explored. Both and exhibited significant phototoxicity against A549 and 4T1 tumor cells type-I/-II PDT.

View Article and Find Full Text PDF

Protocol to detect neutral lipids with BODIPY staining in myeloid-derived suppressor cells in mouse mammary tumors.

STAR Protoc

January 2025

Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA. Electronic address:

Neutral lipids affect the immunosuppressive function of myeloid-derived suppressor cells (MDSCs). Here, we present a protocol for measuring neutral lipids in MDSCs using BODIPY from mouse mammary tumor derived from triple-negative breast cancer cells, 4T1, which is applicable to other mammary tumors of interest. We describe steps for 4T1 cell culture, single-cell isolation from tumors, staining of cells with antibodies and BODIPY, and flow cytometry.

View Article and Find Full Text PDF

A prospective, phase II, neoadjuvant study based on chemotherapy sensitivity in HR+/HER2- breast cancer-FINEST study.

Cancer Commun (Lond)

January 2025

Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Centre, Shanghai, P. R. China.

Background: Hormone receptor-positive (HR+)/humaal growth factor receptor 2-negative (HER2-) breast cancer, the most common breast cancer type, has variable prognosis and high recurrence risk. Neoadjuvant therapy is recommended for median-high risk HR+/HER2- patients. This phase II, single-arm, prospective study aimed to explore appropriate neoadjuvant treatment strategies for HR+/HER2- breast cancer patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!