A zinc metal-organic framework, i.e., Zn-MOF (Zn-DBC), with ca. 27% solvent-accessible void volume was synthesized from a rationally designed tetraacid based on sterically insulated dibenzo[,]chrysene core; the latter inherently features concave shapes. Due to rigidification of the fluorophore in the MOF, Zn-DBC exhibits a respectable fluorescence quantum yield of ca. 30% in the solid state. The fluorescent and water-stable Zn-DBC MOF was found to display intriguing temperature-dependent emission behavior with an activation barrier of 1.06 kcal/mol for radiationless deactivation from the singlet-excited state. It is shown that the Zn-MOF can be employed as an efficient sensory material for detection of hazardous "quat" dicationic herbicides in water by diffusion-limited "turn-off" fluorescence. Due to confinement of the cationic guest analytes within the pores of the MOF, the fluorescence quenching via excited-state charge transfer mechanism is shown to depend on the molecular size of the analyte in addition to the redox potentials. Remarkably, Zn-DBC permits sensing of DQ, a well-known toxic "quat" herbicide, with a detection limit as low as 2.8 ppm in water. The unique structural attributes of the Zn-MOF for highly efficient fluorescence sensing of toxic herbicides in water are thus exemplified for the first time.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.0c00307DOI Listing

Publication Analysis

Top Keywords

herbicides water
12
temperature-dependent emission
8
fluorescence sensing
8
hazardous "quat"
8
fluorescence
5
emission turn-off
4
turn-off fluorescence
4
sensing hazardous
4
"quat" herbicides
4
water
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!