Lightweight Highly Tunable Jamming-Based Composites.

Soft Robot

Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.

Published: December 2020

Tunable-impedance mechanisms can improve the adaptivity, robustness, and efficiency of a vast array of engineering systems and soft robots. In this study, we introduce a tunable-stiffness mechanism called a "sandwich jamming structure," which fuses the exceptional stiffness range of state-of-the-art laminar jamming structures (also known as layer jamming structures) with the high stiffness-to-mass ratios of classical sandwich composites. We experimentally develop sandwich jamming structures with performance-to-mass ratios that are far greater than laminar jamming structures (e.g., a 550-fold increase in stiffness-to-mass ratio), while simultaneously achieving tunable behavior that standard sandwich composites inherently cannot achieve (e.g., a rapid and reversible 1800-fold increase in stiffness). Through theoretical and computational models, we then show that these ratios can be augmented by several orders of magnitude further, and we provide an optimization routine that allows designers to build the best possible sandwich jamming structures given arbitrary mass, volume, and material constraints. Finally, we demonstrate the utility of sandwich jamming structures by integrating them into a wearable soft robot (i.e., a tunable-stiffness wrist orthosis) that has negligible impact on the user in the off state, but can reduce muscle activation by an average of 41% in the on state. Through these theoretical and experimental investigations, we show that sandwich jamming structures are a lightweight highly tunable mechanism that can markedly extend the performance limits of existing structures and devices.

Download full-text PDF

Source
http://dx.doi.org/10.1089/soro.2019.0053DOI Listing

Publication Analysis

Top Keywords

jamming structures
28
sandwich jamming
16
lightweight highly
8
highly tunable
8
jamming
8
laminar jamming
8
structures
8
sandwich composites
8
sandwich
6
tunable jamming-based
4

Similar Publications

Based on the analysis of the structures of robots and electronics developed so far, it should be noted that a majority of them need a reservoir for electrical energy storage. Unfortunately, most off-the-shelf devices commercially available nowadays are based on rigid parts that heavily limit the possibilities of incorporating such products into soft robots and wearable electronics. To address these issues, a new type of flexible structure for electrical energy storage, which consists of small battery cells connected by liquid metal paths, was proposed.

View Article and Find Full Text PDF

Concentrated suspensions of Brownian and non-Brownian particles display distinctive rheological behavior highly dependent on shear rate and shear stress. Cornstarch suspensions, composed of starch particles from corn plants, served as a model for concentrated non-Brownian suspensions, demonstrating discontinuous shear thickening (DST) and dynamic shear jamming (SJ). However, starch particles from other plant sources have not yet been investigated, despite their different sizes and shapes.

View Article and Find Full Text PDF

Direct ink writing (DIW) enables 3D printing of macroscopic objects with well-defined structures and compositions that controllably change over length scales of order 100 µm. Unfortunately, only a limited number of materials can be processed through DIW because it imparts stringent rheological requirements on inks. This limitation can be overcome for soft materials, if they are formulated as microparticles that, if jammed, fulfill the rheological requirements to be printed.

View Article and Find Full Text PDF
Article Synopsis
  • Foam fluids are unstable systems that change over time, so understanding how they destabilize is important for industrial uses.
  • This study investigated the role of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) in improving foam stability and found that they significantly slow down bubble growth and liquid drainage.
  • The research led to a new model for predicting drainage time that accounts for the delay caused by the presence of CNCs, showing it can deviate from classical theories by up to 400%.
View Article and Find Full Text PDF

This paper concerns the viscoelastic properties and the resulting structure of colloidal systems with short-range attractions in the regime where the volume fraction f is small. Unlike the high ϕ regime, which is well understood in terms of mode-coupling theory (MCT), the low ϕ regime is still the subject of a debate based on different concepts such as percolation, diffusion-limited colloidal aggregation (DLCA), jamming, or cluster mode-coupling approach. Prior to the analysis of three examples of attractive systems at low ϕ values, a summary of concepts relevant to understanding the formation and properties of such attractive particles is discussed in the present study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!