Background: Low temperatures decrease the capacity for biomass production and lead to growth retardation up to irreversible cellular damage in modern maize cultivars. European flint landraces are an untapped genetic resource for genes and alleles conferring cold tolerance which they acquired during their adaptation to the agroecological conditions in Europe.
Results: Based on a phenotyping experiment of 276 doubled haploid lines derived from the European flint landrace "Petkuser Ferdinand Rot" diverging for cold tolerance, we selected 21 of these lines for an RNA-seq experiment. The different genotypes showed highly variable transcriptomic responses to cold. We identified 148, 3254 and 563 genes differentially expressed with respect to cold treatment, cold tolerance and growth rate at cold, respectively. Gene ontology (GO) term enrichment demonstrated that the detoxification of reactive oxygen species is associated with cold tolerance, whereas amino acids might play a crucial role as antioxidant precursors and signaling molecules.
Conclusion: Doubled haploids representing a European maize flint landrace display genotype-specific transcriptome patterns associated with cold response, cold tolerance and seedling growth rate at cold. Identification of cold regulated genes in European flint germplasm, could be a starting point for introgressing such alleles in modern breeding material for maize improvement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7158136 | PMC |
http://dx.doi.org/10.1186/s12864-020-6682-1 | DOI Listing |
BMC Genomics
January 2025
College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China.
Cold stress in winter is one of the most severe abiotic stresses on plant growth and flourishing, and the selection of cold tolerant genotypes is an important strategy to ensure the safety of plant growth and development. Cyclocarya paliurus, a diclinous and versatile tree species originally in subtropical regions, has been introduced and cultivated in the warm temperate zone of China to meet the increasing market demand for its leaf yield. However, information regarding its cold tolerance remains limited.
View Article and Find Full Text PDFSci Rep
January 2025
Plant Production Engineering and Genetics Department, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.
Abiotic stresses, notably cold stress, significantly influence various aspects of plant development and reproduction. Various approaches have been proposed to counteract the adverse impacts of cold stress on plant productivity. The unique properties of nanoparticles contribute to an enhanced tolerance of plants to challenging conditions.
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
Department of Endocrinology, Gongli Hospital of Shanghai Pudong New Area, School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China.
Brown adipose tissue (BAT) is an ideal target organ for obesity treatment. Resinacein S is extracted from Ganoderma lucidum and can elevate Uncoupling protein 1 (UCP1) in cells, but its related effects at the animal level are not clear. The mice were fed with high-fat diet to construct obesity models and treated with Resinacein S.
View Article and Find Full Text PDFSci Rep
January 2025
College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
Ethylene is a signalling factor that plays a key role in the response of plants to abiotic stresses, such as cold stress. Recent studies have shown that the exogenous application of 1-aminocyclopropane-1-carboxylate (ACC), an ethylene promoter, affects plant cold tolerance. The cold-responsive specific gene DREB plays a crucial role in enhancing cold tolerance in plants by activating several cold-responsive (COR) genes.
View Article and Find Full Text PDFJ Biosci Bioeng
January 2025
College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266045, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!