Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment and contribute to tumor cell proliferation and metastasis. Microfibrillar-associated protein 5 (MFAP5), a component of elastic microfibers and an oncogenic protein in several types of tumors, is secreted by CAFs. However, the role of MFAP5 in the bladder cancer remains unclear. Here, we report that MFAP5 is upregulated in bladder cancer and is associated with poor patient survival. Downregulation of MFAP5 in CAFs led to an impairment in proliferation and invasion of bladder cancer cells. Luciferase reporter assays and electrophoretic mobility shift assays (EMSA) showed QKI directly downregulates MFAP5 in CAFs. In addition, CAFs-derived MFAP5 led to an activation of the NOTCH2/HEY1 signaling pathway through direct interaction with the NOTCH2 receptor, thereby stimulating the N2ICD release. RNA-sequencing revealed that MFAP5-mediated PI3K-AKT signaling activated the DLL4/NOTCH2 pathway axis in bladder cancer. Moreover, downregulation of NOTCH2 by short hairpin RNA or the inactivating anti-body NRR2Mab was able to reverse the adverse effects of MFAP5 stimulation in vitro and in vivo. Together, these results demonstrate CAFs-derived MFAP5 promotes the bladder cancer proliferation and metastasis and provides new insight for targeting CAFs as novel diagnostic and therapeutic strategy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.201902659R | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!