Domestication of animals imposes strong targeted selection for desired traits but can also result in unintended selection due to new domestic environments. Atlantic salmon (Salmo salmar) was domesticated in the 1970s and has subsequently been selected for faster growth in systematic breeding programmes. More recently, salmon aquaculture has replaced fish oils (FOs) with vegetable oils (VOs) in feed, radically changing the levels of essential long-chain polyunsaturated fatty acids (LC-PUFAs). Our aim here was to study the impact of domestication on metabolism and explore the hypothesis that the shift to VO diets has unintentionally selected for a domestication-specific lipid metabolism. We conducted a 96-day feeding trial of domesticated and wild salmon fed diets based on FOs, VOs or phospholipids, and compared transcriptomes and fatty acids in tissues involved in lipid absorption (pyloric caeca) and lipid turnover and synthesis (liver). Domesticated salmon had faster growth and higher gene expression in glucose and lipid metabolism compared to wild fish, possibly linked to differences in regulation of circadian rhythm pathways. Only the domesticated salmon increased expression of LC-PUFA synthesis genes when given VOs. This transcriptome response difference was mirrored at the physiological level, with domesticated salmon having higher LC-PUFA levels but lower 18:3n-3 and 18:2n-6 levels. In line with this, the VO diet decreased growth rate in wild but not domesticated salmon. Our study revealed a clear impact of domestication on transcriptomic regulation linked to metabolism and suggests that unintentional selection in the domestic environment has resulted in evolution of stronger compensatory mechanisms to a diet low in LC-PUFAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.15446 | DOI Listing |
Maladapted immigrants may reduce wild population productivity and resilience, depending on the degree of fitness mismatch between dispersers and locals. Thus, domesticated individuals escaping into wild populations is a key conservation concern. In Prince William Sound, Alaska, over 700 million pink salmon () are released annually from hatcheries, providing a natural experiment to characterize the mechanisms underlying impacts to wild populations.
View Article and Find Full Text PDFNat Food
January 2025
The Rowett Institute, University of Aberdeen, Aberdeen, UK.
Seafood can contribute towards healthy and sustainable food systems by improving public health and helping achieve net zero carbon emissions. Here, we provide a high-resolution perspective on UK seafood supplies and nutrient flows at the species level. We mapped seafood production (capture and aquaculture), trade (imports and exports), purchases (within and out of home) and seafood consumption between 2009 and 2020.
View Article and Find Full Text PDFScand J Med Sci Sports
October 2024
Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK.
The aim of this study was to investigate the difference in head acceleration event (HAE) incidence between training and match-play in women's and men's players competing at the highest level of domestic rugby union globally. Players from Women's (Premiership Women's Rugby, Farah Palmer Cup) and Men's (Premiership Rugby, Currie Cup) rugby union competitions wore instrumented mouthguards during matches and training sessions during the 2022/2023 seasons. Peak linear (PLA) and angular (PAA) acceleration were calculated from each HAE and included within generalized linear mixed-effects models.
View Article and Find Full Text PDFMol Ecol
November 2024
Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
Escape of genetically distinct farmed Atlantic salmon (Salmo salar) raises concerns about their potential interactions with wild populations and the disruption of local adaptation through genetic admixture. It is often unknown whether genetic origin or common domestication effects will have a greater influence on consequences posed by escaped farmed fish. Previous work showed that domestication could have prevalent effects on the behaviour and growth of farmed salmon, independent of their genetic origin.
View Article and Find Full Text PDFViruses
July 2024
Freshwater Institute, Fisheries and Oceans Canada (DFO), 501 University Crescent, Winnipeg, MB R3T 2N6, Canada.
Spring viremia of carp virus (SVCV) is a rhabdovirus that primarily infects cyprinid finfishes and causes a disease notifiable to the World Organization for Animal Health. Amphibians, which are sympatric with cyprinids in freshwater ecosystems, are considered non-permissive hosts of rhabdoviruses. The potential host range expansion of SVCV in an atypical host species was evaluated by testing the susceptibility of amphibians native to the Pacific Northwest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!