Histone deacetylase 6 (HDAC6) is involved in multiple cellular processes such as aggresome formation, protein stability, and cell motility. Numerous HDAC6-selective inhibitors have been developed as cellular chemical tools to elucidate the function of HDAC6. Since HDAC6 has multiple domains that cannot be studied by HDAC6-selective inhibitors, CRISPR-CAS9 and siRNA/shRNA have been employed to elucidate the nonenzymatic functions of HDAC6. However, these genetic methods have many limitations. Proteolysis targeting chimera (PROTAC) is an emerging technology for the development of small molecules that can quickly remove the entire protein in cells. We previously developed multifunctional HDAC6 degraders that can recruit cereblon (CRBN) E3 ubiquitin ligase. These HDAC6 degraders can degrade not only HDAC6 but also neo-substrates of CRBN. They are excellent candidates for the development of anticancer therapeutics, but the multifunctional nature of the CRBN-based HDAC6 degraders has limited their utility as specific chemical probes for the study of HDAC6-related cellular pathways. Herein we report the development of the first cell-permeable HDAC6-selective degraders employing Von Hippel-Lindau (VHL) E3 ubiquitin ligase, which does not have any known neo-substrates. The DC's of the most potent compound are 7.1 nM and 4.3 nM in human MM1S and mouse 4935 cell lines, respectively. The 's of in these two cell lines are 90% and 57%, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7153272 | PMC |
http://dx.doi.org/10.1021/acsmedchemlett.0c00046 | DOI Listing |
Commun Biol
January 2025
Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
Osteoarthritis (OA) is a degenerative joint disease that affects the cartilage and surrounding tissues. The transcription factor Kruppel-like family factor 9 (KLF9) has been identified as a regulator of tumorigenesis. However, its role in OA is still not fully understood.
View Article and Find Full Text PDFAppl Radiat Isot
December 2024
Department of Isotope Application Research, National Atomic Research Institute, Taoyuan City, Taiwan, ROC.
Histone deacetylase 6 (HDAC6) is an enzyme crucial in epigenetic regulation and protein degradation, with implications in various cancers and neurodegenerative disorders. While HDAC6 is recognized as a promising therapeutic target for Parkinson's and Alzheimer's diseases, its involvement in spinocerebellar ataxias (SCAs) remains underexplored. Currently, there are no direct methods available for characterizing HDAC6 in the brains of living subjects.
View Article and Find Full Text PDFMetabolism
December 2024
School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea; Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:
Background: Diabetic retinopathy (DR), a major blindness cause in developed countries, is intricately linked to diabetes management and its duration. Here, we demonstrate that HDAC6 mediates NLRP3 inflammasome activation under diabetic conditions, leading to retinal inflammation and degeneration.
Methods: This study demonstrated the therapeutic effects of HDAC6 genetic ablation, pharmacological inhibition, and HDAC6-deficient bone marrow transplantation in a diabetes model induced by streptozotocin and a high-fat diet.
Nutrients
December 2024
Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
J Med Chem
January 2025
School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
Acute liver injury is a severe and potentially life-threatening condition. Currently, there are no specific effective treatments available. HDAC6 has been identified as a promising strategy for treating ALI by inhibiting necrosis and inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!