Objective: The aim was to assess the influence of Er, Cr: YSGG laser (ECL) and fractional carbon dioxide laser (FCL) on the shear bond strength (SBS) and microleakage of bioactive restorative material to dentin.
Methods: The study was performed in King Saud university in the month of June-July 2019. One hundred and twenty permanent teeth were vertically placed in acrylic resin. Based on the type of surface treatment regime (n=40), samples were divided into three groups. Group-I samples were surface conditioned with total etch and rinse (TE); Group-2 samples were surface treated with Er, Cr: YSGG laser (ECL) and Group-3 specimens were conditioned with fractional carbon dioxide laser (FCL). Surface treatment of dentin was followed by type of bulk fill resin (BFR) application. Tetric-N-Ceram was bonded to dentin conditioned with TE (n=20), FCL (n=20) and ECL (n=20). Similarly, bioactive material (BAM) was also bonded to conditioned surface (n=60). Samples (n=10) among each group were placed in a Universal testing machine. For microleakage testing 5 pairs of samples from each group (n=10) were placed in solution of 2% methylene blue for 24h Fracture analysis was performed using stereomicroscope at 40x magnification. Descriptive statistics i.e., means and standard for SBS and microleakage were compared using analysis of variance (ANOVA) and Tukey's post hoc test at a significance level of (p < 0.05).
Results: The highest SBS scores were displayed by TE-BFR (Bulk filled resin) (19.21 ± 0.925 Mpa) and the lowest shear bond scores were presented by FCL-BFR (11.06±1.611 Mpa). The lowest microleakage scores were exhibited by group ECL-BFR (24.11±13.01nm). Similarly, the highest microleakage score was displayed in group FCL-BAM (42.18±16.32 nm). Admixed failure was pertinent in groups conditioned by ECL. Moreover, groups conditioned with FCL adhesive type of failure was found in abundance.
Conclusions: ECL has a potential to be used as an alternate to total etch and rinse for conditioning of dentin when bonded to bioactive materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150372 | PMC |
http://dx.doi.org/10.12669/pjms.36.3.1819 | DOI Listing |
Pharm Biol
December 2025
Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Department of Central Laboratory, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China.
Context: Celastrol, acknowledged as a prominent exemplar of the potential for transforming traditional medicinal compounds into contemporary pharmaceuticals, has garnered considerable attention owing to its extensive pharmacological activities. The increasing volume of publications concerning celastrol highlights its importance in current scientific inquiry. Despite the growing interest in this compound, a bibliometric analysis focused on this subject remains to be undertaken.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China.
Dysfunction in the SHP1 enzyme can cause cancers and many diseases, so it is of great significance to develop novel small molecule SHP1 inhibitors. Through continuous monitoring of metabolic and targeted processes of SHP1 inhibitors in real-time, we can evaluate the effectiveness and toxicity of the inhibitors, further optimize drug design, and explore SHP1 biology. Indoloquinoxaline is an important class of N-containing heterocycle, which has been studied and applied in the pharmacological field and in optoelectronic materials.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
Infectious bone defects present a significant clinical challenge, characterized by infection, inflammation, and subsequent bone tissue destruction. Traditional treatments, including antibiotic therapy, surgical debridement, and bone grafting, often fail to address these defects effectively. However, recent advancements in biomaterials research have introduced innovative solutions for managing infectious bone defects.
View Article and Find Full Text PDFJ Dent
December 2024
Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. Electronic address:
Objectives: To evaluate the multifunctionality of silver-copper co-loaded mesoporous bioactive glass (MBG), with the goal of developing an advanced pulp-capping material.
Methods: The synthesis of materials was conducted using the sol-gel method, following the approach described in previous studies but with some modifications. The composition included 80 mol% SiO₂, 15 mol% CaO, and 5 mol% P₂O₅, with additional components of 5 mol% silver, 5 mol% copper, or 1 mol% silver combined with 4 mol% copper, designated as Ag5/80S, Cu5/80S, or Ag1Cu4/80S, respectively.
Int J Biol Macromol
December 2024
Yıldız Technical University, Department of Bioengineering, Davutpasa Campus, 34210 Esenler, İstanbul, Turkey.
The development of hybrid materials that integrate bioactive and antimicrobial properties within a biodegradable and biocompatible polymer matrix is a key focus in current biomedical research and applications. A significant research gap exists in the field of PHBV nanocomposites, particularly concerning those that simultaneously incorporate both ZnO and HAP particles. This study focuses on the fabrication and characterization of innovative hybrid bionanocomposites composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) combined with zinc oxide (ZnO) and silicon-doped hydroxyapatite (SiHAP) nanocrystals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!