Two entomopathogenic bacteria, and , are known to be able to synthesize and secrete eicosanoid biosynthesis inhibitors (EIBs) that can enhance pathogenicity of (Bt) against different target insects. Such enhancements can be explained by the suppression of immune responses in the hemocoel by EIBs. However, little is known about the role of EIBs in the defense against Bt pathogenicity in the gut. This study was focused on the role of insect gut immunity in the defense against Bt pathogenicity, in which the cooperative effect of bacterial metabolites was assessed. Screening 14 different bacterial strains, bacterial culture broth of Photorhabdus subsp. ANU101 (Ptt) gave the highest cooperative effect on Bt virulence along with significant inhibitory activity against phospholipase A (PLA) of . In gut lumen, Ptt culture broth suppressed the generation of reactive oxygen species (ROS) induced by Bt treatment and facilitated bacterial growth, similar to vitamin E, an antioxidant. To analyze the ROS source, dual oxidase () and NADPH-dependent oxidase () genes were predicted from genome and their expressions were confirmed in larval gut. RNA interference (RNAi) of expression reduced ROS levels in both gut epithelium and lumen while RNAi of expression reduced ROS levels only in gut epithelium. Ptt extract significantly suppressed gene expression levels of and , leading to lower ROS concentrations in the gut lumen. Three commercial PLA inhibitors significantly increased the insecticidal activity of Bt by suppressing ROS levels in the gut lumen. These results indicate that Ptt extract containing EBIs can prevent up-regulation of ROS level in the midgut in response to Bt infection and enhance the virulence of Bt against . .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7120046PMC
http://dx.doi.org/10.3389/fmicb.2020.00528DOI Listing

Publication Analysis

Top Keywords

gut lumen
12
ros levels
12
levels gut
12
reactive oxygen
8
oxygen species
8
eicosanoid biosynthesis
8
biosynthesis inhibitors
8
defense pathogenicity
8
gut
8
culture broth
8

Similar Publications

Human-derived microRNA 21 regulates indole and L-tryptophan biosynthesis transcripts in the gut commensal .

mBio

January 2025

Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.

Unlabelled: In the gut, microRNAs (miRNAs) produced by intestinal epithelial cells are secreted into the lumen and can shape the composition and function of the gut microbiome. Crosstalk between gut microbes and the host plays a key role in irritable bowel syndrome (IBS) and inflammatory bowel diseases, yet little is known about how the miRNA-gut microbiome axis contributes to the pathogenesis of these conditions. Here, we investigate the ability of miR-21, a miRNA that we found decreased in fecal samples from IBS patients, to associate with and regulate gut microbiome function.

View Article and Find Full Text PDF

The vagus nerve is proposed to enable communication between the gut microbiome and the brain, but activity-based evidence is lacking. We find that mice reared germ-free exhibit decreased vagal tone relative to colonized controls, which is reversed via microbiota restoration. Perfusing antibiotics into the small intestines of conventional mice, but not germ-free mice, acutely decreases vagal activity which is restored upon re-perfusion with intestinal filtrates from conventional, but not germ-free, mice.

View Article and Find Full Text PDF

Interactions between gut microbes and host promote degradation of various fiber components in Meishan pigs.

mSystems

January 2025

Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.

Unlabelled: Although metagenomic investigations into microbial fiber-degrading capabilities are currently prevalent, there is a notable gap in research concerning the regulatory mechanisms underpinning host-microbiota interactions that confer tolerance to high-fiber diets in pigs. In this study, 28 Meishan (MS) and 28 Large White (LW) pigs were subjected to feeding experiments involving various fiber levels. Subsequently, multi-omics was employed to investigate the influence of host-microbiota interactions on the fiber degradation of pigs.

View Article and Find Full Text PDF

The contribution of the gut to the ingestion, production, absorption, and excretion of the extra ammonia and urea-N associated with feeding ("exogenous" fraction) has received limited prior attention. Analysis of commercial pellet food revealed appreciable concentrations of ammonia and urea-N. Long term satiation-feeding increased whole trout ammonia and urea-N excretion rates by 2.

View Article and Find Full Text PDF

Competition among bacteria for carbohydrates is pivotal for colonization resistance (CR). However, the impact of Western-style diets on CR remains unclear. Here we show how the competition between Klebsiella oxytoca and Klebsiella pneumoniae is modulated by consuming one of three Western-style diets characterized by high-starch, high-sucrose, or high-fat/high-sucrose content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!