A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel regulator of thirst behavior: phoenixin. | LitMetric

A novel regulator of thirst behavior: phoenixin.

Am J Physiol Regul Integr Comp Physiol

Department of Pharmacology and Physiology, Center for Neuroscience Research, Saint Louis University School of Medicine, St. Louis, Missouri.

Published: June 2020

There are examples of physiological conditions under which thirst is inappropriately exaggerated, and the mechanisms for these paradoxical ingestive behaviors remain unknown. We are interested in thirst mechanisms across the female life cycle and have identified a novel mechanism through which ingestive behavior may be activated. We discovered a previously unrecognized endogenous hypothalamic peptide, phoenixin (PNX), identified physiologically relevant actions of the peptide in brain and pituitary gland to control reproductive hormone secretion in female rodents, and in the process identified the previously orphaned G protein-coupled receptor Gpr173 to be a potential receptor for the peptide. Labeled PNX binding distribution in brain parallels areas known to be important in ingestive behaviors as well in areas where gonadal steroids feedback to control estrous cyclicity (Stein LM, Tullock CW, Mathews SK, Garcia-Galiano D, Elias CF, Samson WK, Yosten GLC, 311: R489-R496, 2016). We have demonstrated upregulation of Gpr173 during puberty, fluctuations across the estrous cycle, and, importantly, upregulation during the last third of gestation. It is during this hypervolemic, hyponatremic state that both vasopressin secretion and thirst are inappropriately elevated in humans. Here, we show that central administration of PNX stimulated water drinking in both males and females under ad libitum conditions, increased water drinking after overnight fluid deprivation, and increased both water and 1.5% NaCl ingestion under fed and hydrated conditions. Importantly, losartan pretreatment blocked the effect of PNX on water drinking, and knockdown of Gpr173 by use of short interfering RNA constructs significantly attenuated water drinking in response to overnight fluid deprivation. These actions, together with the stimulatory action of PNX on vasopressin secretion, suggest that this recently discovered neuropeptide may impact the recruitment of critically important neural circuits through which ingestive behaviors and endocrine mechanisms that maintain fluid and electrolyte homeostasis are regulated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311681PMC
http://dx.doi.org/10.1152/ajpregu.00023.2020DOI Listing

Publication Analysis

Top Keywords

water drinking
16
ingestive behaviors
12
thirst inappropriately
8
vasopressin secretion
8
increased water
8
overnight fluid
8
fluid deprivation
8
pnx
5
water
5
novel regulator
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!