Solar-driven reduction of CO into renewable carbon forms is considered as an alternative approach to address global warming and the energy crisis but suffers from low efficiency of the photocatalysts. Herein, a direct Z-Scheme SnS /sulfur-bridged covalent triazine frameworks (S-CTFs) photocatalyst (denoted as SnS /S-CTFs) was developed, which could efficiently adsorb CO owing to the CO -philic feature of S-CTFs and promote separation of photoinduced electron-hole pairs. Under visible-light irradiation, SnS /S-CTFs exhibited excellent performance for CO photoreduction, yielding CO and CH with evolution rates of 123.6 and 43.4 μmol g h , respectively, much better than the most catalysts reported to date. This inorganic/organic hybrid with direct Z-Scheme structure for visible-light-driven CO photoreduction provides new insights for designing photocatalysts with high efficiency for solar-to-fuel conversion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202000712 | DOI Listing |
Langmuir
January 2025
School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
Herein, first, MIL-125 samples were synthesized via a hydrothermal method. Then, Ag species were doping on the surface of MIL-125 samples via the photolysis of silver nitrate. Finally, the Z-scheme MIL-125/Ag/BiOBr composite was synthesized via a directed liquid assembly method.
View Article and Find Full Text PDFSmall
January 2025
Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Anhui University, Hefei, Anhui, 230601, P. R. China.
Photocatalytic hydrogen production is currently considered a clean and sustainable route to meet the energy and environmental issues. Among, heterojunction photocatalysts have been developed to improve their photocatalytic efficiency. Defect engineering of heterojunction photocatalysts is attractive due to it can perform as electron trap and change the band structure to optimize the interfacial separation rate of photogenerated electron-hole pairs.
View Article and Find Full Text PDFChemSusChem
January 2025
Kwansei Gakuin University: Kansei Gakuin Daigaku, Department of Applied Chemistry for Environment, 1 Gakuen-Uegahara, 669-1330, Sanda, JAPAN.
The natural Z-scheme of oxygenic photosynthesis efficiently drives electron transfer from photosystem II (PSII) to photosystem I (PSI) via an electron transport chain, despite the lower energy levels of PSII. Inspired by this sophisticated mechanism, we present a layered cascade bio-solar cell (CBSC) that emulates the Z-scheme. In this design, chlorophyll derivatives (Chl) act as PSI analogs, while bacteriochlorophyll derivatives (BChl) serve as PSII analogs in the active layer.
View Article and Find Full Text PDFSmall
January 2025
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
How to improve the stability and activity of metal-organic frameworks is an attractive but challenging task in energy conversion and pollutant degradation of metal-organic framework materials. In this paper, a facile method is developed by fabricating titanium dioxide nanoparticles (TiO NPs) layer on 2D copper tetracarboxylphenyl-metalloporphyrin metal-organic frameworks with zinc ions as the linkers (ZnTCuMT-X, "Zn" represented zinc ions as the linkers, the first "T" represented tetracarboxylphenyl-metalloporphyrin (TCPP), "Cu" represented the Cu coordinated into the porphyrin macrocycle, "M" represented metal-organic frameworks, the second "T" represented TiO NPs layer, and "X" represented the added volume of n-tetrabutyl titanate (X = 100, 200, 300 or 400)). It is found that the optimized ZnTCuMT-200 showed greatly and stably enhanced H generation, which is ≈28.
View Article and Find Full Text PDFMolecules
December 2024
School of Physics, Changchun Normal University, Changchun 130032, China.
A highly versatile Z-scheme heterostructure, HoSmSbO/YbDyBiNbO (HYO), was synthesized using an ultrasonic-assisted solvent thermal method. The HYO heterojunction, composed of dual ABO compounds, exhibits superior separation of photogenerated carriers due to its efficient Z-scheme mechanism. The synergistic properties of HoSmSbO and YbDyBiNbO, particularly the excellent visible light absorption, enable HYO to achieve exceptional photocatalytic performance in the degradation of fenitrothion (FNT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!