AI Article Synopsis

  • Bacterial small RNAs (sRNAs) can inhibit translation by forming duplexes that block key parts of target mRNAs, but their exact mechanisms, especially those distant from the Shine-Dalgarno (SD) region, are not fully understood.
  • Previous studies showed that the sRNA SgrS represses manY mRNA by interacting upstream of the SD, forming a duplex with a translation-enhancing element in the manY 5' untranslated region.
  • This process involves the small ribosomal subunit protein S1 promoting translation, while SgrS and the chaperone protein Hfq work together to disrupt this interaction, suggesting that sRNA-mediated silencing of translation enhancers could be a widespread gene regulation strategy in bacteria.

Article Abstract

Many bacterial small RNAs (sRNAs) efficiently inhibit translation of target mRNAs by forming a duplex that sequesters the Shine-Dalgarno (SD) sequence or start codon and prevents formation of the translation initiation complex. There are a growing number of examples of sRNA-mRNA binding interactions distant from the SD region, but how these mediate translational regulation remains unclear. Our previous work in Escherichia coli and Salmonella identified a mechanism of translational repression of manY mRNA by the sRNA SgrS through a binding interaction upstream of the manY SD. Here, we report that SgrS forms a duplex with a uridine-rich translation-enhancing element in the manY 5' untranslated region. Notably, we show that the enhancer is ribosome-dependent and that the small ribosomal subunit protein S1 interacts with the enhancer to promote translation of manY. In collaboration with the chaperone protein Hfq, SgrS interferes with the interaction between the translation enhancer and ribosomal protein S1 to repress translation of manY mRNA. Since bacterial translation is often modulated by enhancer-like elements upstream of the SD, sRNA-mediated enhancer silencing could be a common mode of gene regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502529PMC
http://dx.doi.org/10.1111/mmi.14514DOI Listing

Publication Analysis

Top Keywords

ribosomal protein
8
translation
7
enhancer
5
translation inhibition
4
inhibition distance
4
distance small
4
small rna
4
sgrs
4
rna sgrs
4
sgrs silences
4

Similar Publications

Integrative taxonomy of the genus Pseudoacanthocephalus (Acanthocephala: Echinorhynchida) in China, with the description of two new species and the characterization of the mitochondrial genomes of Pseudoacanthocephalus sichuanensis sp. n. and Pseudoacanthocephalus nguyenthileae.

Parasit Vectors

December 2024

Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China.

Background: Acanthocephalans (thorny headed worms) of the genus Pseudoacanthocephalus mainly parasitize amphibians and reptiles across the globe. Some species of the genus Pseudoacanthocephalus also can accidentally infect human and cause human acanthocephaliasis. Current knowledge of the species composition of the genus Pseudoacanthocephalus from amphibians and reptiles in China is incomplete.

View Article and Find Full Text PDF

Diagnostic Accuracy of Novel Protein Biomarkers in Saliva to Detect Periodontitis Using Untargeted 'SWATH' Mass Spectrometry.

J Clin Periodontol

December 2024

Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain.

Aim: To discover new salivary biomarkers to diagnose periodontitis and evaluate the impact of age and smoking on predictive capacity.

Material And Methods: Saliva samples were collected from 44 healthy periodontal individuals and 41 with periodontitis. Samples were analysed by sequential window acquisition of all theoretical mass spectra (SWATH-MS), and proteins were identified by employing the UniProt database.

View Article and Find Full Text PDF

Nucleolar protein PEXF controls ribosomal RNA synthesis and pluripotency exit.

Dev Cell

December 2024

Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China. Electronic address:

Maintenance and exit from pluripotency of embryonic stem cells (ESCs) are controlled by highly coordinated processes of protein synthesis and ribosome biogenesis (RiBi). ESCs are characterized by low rates of global protein synthesis and high levels of RiBi. Transient reduction of RiBi is a characteristic molecular event during the exit from pluripotency, of which the regulatory mechanism is unclear.

View Article and Find Full Text PDF

Comparative proteomic analysis reveals the response mechanism of freshwater leech (Whitmania pigra) under heat-stress challenge.

Comp Biochem Physiol Part D Genomics Proteomics

December 2024

Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China. Electronic address:

Temperature is an environmental parameter that remarkably affects the survival and organism health of poikilothermal animal-Whitmania pigra Whitman. Heat stress destroys the physiological homeostasis of intestine tissue. However, no studies on the intestinal mucosa response of leech exposure to heat stress have been reported so far.

View Article and Find Full Text PDF

Fucosterol, a Phytosterol of Marine Algae, Attenuates Immobilization-Induced Skeletal Muscle Atrophy in C57BL/6J Mice.

Mar Drugs

December 2024

Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.

The objective of this study was to examine whether fucosterol, a phytosterol of marine algae, could ameliorate skeletal muscle atrophy in tumor necrosis factor-alpha (TNF-α)-treated C2C12 myotubes and in immobilization-induced C57BL/6J mice. Male C57BL6J mice were immobilized for 1 week to induce skeletal muscle atrophy. Following immobilization, the mice were administrated orally with saline or fucosterol (10 or 30 mg/kg/day) for 1 week.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!