A hydroxyl-functionalized homochiral porous organic cage (POC) was synthesized and characterized by FTIR, NMR, thermogravimetric analysis (TGA), MALDI-TOF-MS, and elemental analysis. The synthesized homochiral POC was used as stationary phase to prepare a capillary gas chromatography (GC) column by a static coating method. The fabricated column shows excellent selectivity not only for the separation of positional isomers but also for the resolution of various racemates. Thirty-nine racemates have been resolved on the column, including alcohols, diols, halohydrocarbons, epoxides, esters, lactones, ketones, ethers, and organic acids. Compared to the commercial β-DEX 120 column and previously reported chiral POCs (CC3-R, CC9, and CC10)-coated columns, there are 11, 10, 24, and 15 tested racemates that cannot be resolved on β-DEX 120 column, CC3-R column, CC9 column, and CC10 column, respectively. This reveals that the fabricated column has prominent complementarity or superior separation performance to these columns in enantioseparation. Besides, the fabricated column can achieve some enantioseparations which are not possible using all previously reported chiral POC-based columns. Some positional isomers (xylenes, dichlorobenzenes, dibromobenzenes, nitrochlorobenzenes, and nitrobromobenzenes) were also separated with high-resolution values. The column exhibits good repeatability, reproducibility, and stability. The relative standard deviation (RSD) values of retention times were 0.03-0.18%, 0.11-0.92%, and 2.1-6.6% for run-to-run (n = 5), day-to-day (n = 5), and column-to-column (n = 3), respectively. The experimental results demonstrate the great potential of POCs for practical application in GC. Graphical Abstract A hydroxyl-functionalized homochiral porous organic cage was used as stationary phase for gas chromatography separation of racemates and positional isomers. The resolution of racemates mainly depended on hydrogen bonding, π-interaction, host-guest inclusion, steric fit, etc., while separation of positional isomers by shape-selective guest binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-020-04252-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!