The molecular mechanisms and targets of nitric oxide (NO) are not fully known in plants. Our study reports the first large-scale quantitative proteomic analysis of NO donor responsive proteins in chickpea. Dose response studies carried out using NO donors, sodium nitroprusside (SNP), diethylamine NONOate (DETA) and S-nitrosoglutathione (GSNO) in chickpea genotype ICCV1882, revealed a dose dependent positive impact on seed germination and seedling growth. SNP at 0.1mM concentration proved to be most appropriate following confirmation using four different chickpea genotypes. while SNP treatment enhanced the percentage of germination, chlorophyll and nitrogen contents in chickpea, addition of NO scavenger, cPTIO reverted its impact under abiotic stresses. Proteome profiling revealed 172 downregulated and 76 upregulated proteins, of which majority were involved in metabolic processes (118) by virtue of their catalytic (145) and binding (106) activity. A few crucial proteins such as S-adenosylmethionine synthase, dehydroascorbate reductase, pyruvate kinase fragment, 1-aminocyclopropane-1-carboxylic acid oxidase, 1-pyrroline-5-carboxylate synthetase were less abundant whereas Bowman-Birk type protease inhibitor, non-specific lipid transfer protein, chalcone synthase, ribulose-1-5-bisphosphate carboxylase oxygenase large subunit, PSII D2 protein were highly abundant in SNP treated samples. This study highlights the protein networks for a better understanding of possible NO induced regulatory mechanisms in plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/FP16324 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!