Under drought conditions the growth and survival of a plant depend on its adaptive characteristics and acclimation ability. Adaptation refers to inherent morpho-physiological characters providing protection against water losses. Acclimation, however, is a special case of phenotypic plasticity: environment-dependent phenotypic expression resulting to a 'new' phenotype through drought-induced modulations in leaf morphology, anatomy and physiology. Given that phenotypic plasticity influences environmental tolerance, a multi-trait plasticity index could be of great importance. Therefore, we examined the acclimation processes of three different barley genotypes using a multi-trait plasticity assessment with emphasis on the leaf water economy-related traits. Our results showed that (i) the structure-function co-ordination during long-term drought acclimation follows the trade-off between carbon gain and water saving as well as the competition between investments in photosynthesis vs synthesis of protective compounds; (ii) the genotypes with smaller leaf area, narrower and denser veins, as well as smaller and denser stomata i.e. traits providing tolerance, exhibited less drastic adjustments under stress conditions, suggesting a trade-off between acclimation and tolerance-adaptation; and (iii) the slope values of a multi-trait 'reaction norm' based on regression analysis of PCA scores were indicative of the degree of plasticity for each genotype, providing an accurate representation of a complex set of data with single numeric results easily comparable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/FP17283 | DOI Listing |
Plant Cell Environ
January 2025
Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China.
How different stress responses by male and female plants are influenced by interactions with rhizosphere microbes remains unclear. In this study, we employed poplar as a dioecious model plant and quantified biotic associations between microorganisms to explore the relationship between microbial associations and plant adaptation. We propose a health index (HI) to comprehensively characterize the physiological characteristics and adaptive capacity of plants under stress.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China.
Assessing how dominant peatland species, such as Dasiphora fruticosa, adapt to water table decline is crucial to advance understanding of their growth and survival strategies. Currently, most studies have primarily focused on their growth and biomass, with limited knowledge on the response of non-structural carbohydrates (NSCs) and physiological adaptations of these woody plants under long-term drainage. This study assessed the response of photosynthesis and transpiration rates, biomass, and NSC concentrations (including soluble sugars and starch) in the leaves, stems, and roots of D.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic.
Climate change poses an unprecedented threat to forest ecosystems, necessitating innovative adaptation strategies. Traditional assisted migration approaches, while promising, face challenges related to environmental constraints, forestry practices, phytosanitary risks, economic barriers, and legal constraints. This has sparked debate within the scientific community, with some advocating for the broader implementation of assisted migration despite these limitations, while others emphasize the importance of local adaptation, which may not keep pace with the rapid rate of climate change.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
School of Aeronautic Science and Engineering, Beihang University, Beijing, China.
Introduction: In-stent restenosis remains a significant challenge in coronary artery interventions. This study aims to explore the relationship between exercise intensity and stent design, focusing on the coupled response of the stent structure and hemodynamics at different exercise intensities.
Methods: A coupled balloon-stent-plaque-artery model and a fluid domain model reflecting structural deformation were developed to investigate the interaction between coronary stents and stenotic vessels, as well as their impact on hemodynamics.
Front Netw Physiol
December 2024
Faculty of Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel.
The Constrained Disorder Principle (CDP) defines all systems in nature by their degree of inherent variability. Per the CDP, the intrinsic variability is mandatory for their proper function and is dynamically changed based on pressures. The CDP defines the boundaries of inherent variability as a mechanism for continuous adaptation to internal and external perturbations, enabling survival and function under dynamic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!