Photosynthesis in different organs of Cleome was analysed in four species known to have differences in leaf photosynthesis: Cleome africana Botsch. (C3), Cleome paradoxa R.Br. (C3-C4 intermediate), Cleome angustifolia Forssk. and Cleome gynandra L. (C4). The chlorophyll content, carbon isotope composition, stomatal densities, anatomy, levels and compartmentation of some key photosynthetic enzymes, and the form and function of photosynthesis were determined in different organs of these species. In the three xerophytes, C. africana, C. paradoxa, and C. angustifolia, multiple organs contribute to photosynthesis (cotyledons, leaves, petioles, stems and pods) which is considered important for their survival under arid conditions. In C. africana, all photosynthetic organs have C3 photosynthesis. In C. paradoxa, cotyledons, leaves, stems and petioles have C3-C4 type features. In C. angustifolia, the pods have C3 photosynthesis, whereas all other organs have C4 photosynthesis with Kranz anatomy formed by a continuous, dual layer of chlorenchyma cells. In the subtropical C4 species C. gynandra, cotyledons, leaves, and pods develop C4 photosynthesis, with Kranz anatomy around individual veins; but not in stems and petioles which have limited function of photosynthesis. The diversity in forms and the capacity of photosynthesis in organs of these species to contribute to their carbon economy is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP17323DOI Listing

Publication Analysis

Top Keywords

photosynthesis organs
12
cotyledons leaves
12
photosynthesis
10
photosynthetic organs
8
organs cleome
8
function photosynthesis
8
organs species
8
organs photosynthesis
8
stems petioles
8
photosynthesis kranz
8

Similar Publications

The dual impact of tire wear microplastics on the growth and ecological interactions of duckweed Lemna minor.

Environ Pollut

January 2025

Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia; Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic. Electronic address:

Tire wear microplastics (TWMs) are continuously generated during driving and are subsequently released into the environment, where they pose potential risks to aquatic organisms. In this study, the effects of untreated, hydrated, and environmentally aged TWMs on the growth, root development, photosynthesis, electron transport system (ETS) activity, and energy-rich molecules of duckweed Lemna minor were investigated. The results indicated that untreated and aged TWMs have the most pronounced negative effects on Lemna minor, as evidenced by reduced growth and impaired root development.

View Article and Find Full Text PDF

The Q-Band Energetics and Relaxation of Chlorophylls and as Revealed by Visible-to-Near Infrared Time-Resolved Absorption Spectroscopy.

J Phys Chem Lett

January 2025

Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China.

Chlorophyll (Chl) is the most abundant light-harvesting pigment of oxygenic photosynthetic organisms; however, the Q-band energetics and relaxation dynamics remain unclear. In this work, we have applied femtosecond time-resolved (-TA) absorption spectroscopy in 430-1,700 nm to Chls and in diluted pyridine solutions under selective optical excitation within their Q-bands. The results revealed distinct near-infrared absorption features of the B ← Q and B ← Q transitions in 930-1,700 nm, which together with the steady-state absorption in 400-700 nm unveiled the Q-state energy that lies 1,000 ± 400 and 600 ± 400 cm above the Q-state for Chls and , respectively.

View Article and Find Full Text PDF

Atrazine and S-metolachlor are herbicides widely used on corn and soybean crops where they are sometimes found in concentrations of concern in nearby aquatic ecosystems, potentially affecting autotrophic organisms. The aim of this study was to investigate the response of the green algae Enallax costatus, the diatom Gomphonema parvulum and a culture of the cyanobacteria Phormidium sp. and Microcystis aeruginosa, to atrazine and S-metolachlor alone and in mixture (0, 10, 100 and 1000 µg.

View Article and Find Full Text PDF

Sea ice can profoundly influence photosynthetic organisms by altering subsurface irradiance, but it is susceptible to changes in the climate. The patterns and timing of sea ice cover can vary on a monthly to annual timescale in small sub-regions of the Western Antarctic Peninsula (WAP). During the latter part of the 20th century, sea ice coverage significantly decreased in the WAP, a trend that aligns with warming in this area.

View Article and Find Full Text PDF

Among all photosynthetic life forms, cyanobacteria exclusively possess a water-soluble, light-sensitive carotenoprotein complex known as orange carotenoid proteins (OCPs), crucial for their photoprotective mechanisms. These protein complexes exhibit both structural and functional modularity, with distinct C-terminal (CTD) and N-terminal domains (NTD) serving as light-responsive sensor and effector regions, respectively. The majority of cyanobacterial genomes contain genes for OCP homologs and related proteins, highlighting their essential role in survival of the organism over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!