Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cassava bacterial blight is the most destructive disease in cassava, causing a significant reduction in its production. The innate immunity response, which has a broad spectrum and a persistent effect, is the basal defence of plants in response to pathogens. Isolation and identification of innate immune-related genes in cassava will contribute to understanding the disease resistance mechanism. In Arabidopsis, the receptor-like cytoplasmic kinase (RLCK) AtBIK1 is known to be an important signal mediator in pathogen-associated molecular pattern-triggered immunity (PTI) response, forming a signal complex from various receptors including the flagellin receptor FLS2, the chitin receptor CERK1 and the receptor for bacterial EF-Tu EFR (Zhang et al. 2010). In the present study, we selected a candidate receptor-like cytoplasmic kinase gene, MeBIK1, from the cassava genome. MeBIK1 encodes a 409 amino acid polypeptide comprising a typical serine/threonine protein kinase domain, and is located on the cell membrane. MeBIK1 gene expression was significantly increased upon stimulation with flagellin (flg22) and peaked at 1h. In vitro genetic complementation experiment showed that MeBIK1 complemented the reduced pathogen-associated molecular pattern-triggered immunity (PTI) response in Arabidopsis bik1 mutant. Arabidopsis MeBIK1 overexpression lines OX1 demonstrated a strong resistance to Xanthomonas axonopodis pv. manihotis HN01, whereas its sensitivity to Pseudomonas syringae pv. tomato DC3000 was enhanced. The peak level of reactive oxygen species (ROS) burst was reached in different Arabidopsis plants (bik1, OX1 and wild type) at 12min after induction with flg22. However, the OX1 showed significantly higher ROS levels than the control and mutant, whereas the lowest level of ROS burst was found in the bik1 mutant. These results indicate that cassava MeBIK1 has a similar function as Arabidopsis AtBIK1 and improves disease resistance in transgenic Arabidopsis by regulating the PTI response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/FP17192 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!