Background: Sepsis is a leading cause of death in intensive care units (ICUs), but outcomes of individual patients are difficult to predict. The recently developed clinical metabolomics has been recognized as a promising tool in the clinical practice of critical illness. The objective of this study was to identify the unique metabolic biomarkers and their pathways in the blood of sepsis nonsurvivors and to assess the prognostic value of these pathways.

Methods: We searched PubMed, EMBASE, Cochrane, Web of Science, CNKI, Wangfang Data, and CQVIP from inception until July 2019. Eligible studies included the metabolomic analysis of blood samples from sepsis patients with the outcome. The metabolic pathway was assigned to each metabolite biomarker. The meta-analysis was performed using the pooled fold changes, area under the receiver operating characteristic curve (AUROC), and vote-counting of metabolic pathways. We also conducted a prospective cohort metabolomic study to validate the findings of our meta-analysis.

Results: The meta-analysis included 21 cohorts reported in 16 studies with 2509 metabolite comparisons in the blood of 1287 individuals. We found highly limited overlap of the reported metabolite biomarkers across studies. However, these metabolites were enriched in several death-related metabolic pathways (DRMPs) including amino acids, mitochondrial metabolism, eicosanoids, and lysophospholipids. Prediction of sepsis death using DRMPs yielded a pooled AUROC of 0.81 (95% CI 0.76-0.87), which was similar to the combined metabolite biomarkers with a merged AUROC of 0.82 (95% CI 0.78-0.86) (P > 0.05). A prospective metabolomic analysis of 188 sepsis patients (134 survivors and 54 nonsurvivors) using the metabolites from DRMPs produced an AUROC of 0.88 (95% CI 0.78-0.97). The sensitivity and specificity for the prediction of sepsis death were 80.4% (95% CI 66.9-89.4%) and 78.8% (95% CI 62.3-89.3%), respectively.

Conclusions: DRMP analysis minimizes the discrepancies of results obtained from different metabolomic methods and is more practical than blood metabolite biomarkers for sepsis mortality prediction.

Trial Registration: The meta-analysis was registered on OSF Registries, and the prospective cohort study was registered on the Chinese Clinical Trial Registry (ChiCTR1800015321).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7157979PMC
http://dx.doi.org/10.1186/s12916-020-01546-5DOI Listing

Publication Analysis

Top Keywords

metabolite biomarkers
16
prediction sepsis
12
sepsis mortality
8
metabolomic analysis
8
sepsis patients
8
metabolic pathways
8
prospective cohort
8
sepsis death
8
sepsis
7
metabolite
6

Similar Publications

In vitro metabolism of seven arolyl-derived fentanyl-type new psychoactive substances.

Arch Toxicol

January 2025

School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.

Over the past decade, fentanyl-type new psychoactive substances (F-NPS) have emerged as the most representative synthetic opioids in third-generation drugs. These substances are characterized by their "low" fatal dose and parent drug levels in biological matrices, "fast" rates of derivatization and metabolism, and "many" derivatization sites and analogs. The low levels of parent fentanyl NPS in biological matrices complicate their detection, necessitating the use of characteristic metabolites as biomarkers for forensic analysis.

View Article and Find Full Text PDF

Multi-Omics Research on Angina Pectoris: A Novel Perspective.

Aging Dis

December 2024

Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.

Angina pectoris (AP), a clinical syndrome characterized by paroxysmal chest pain, is caused by insufficient blood supply to the coronary arteries and sudden temporary myocardial ischemia and hypoxia. Long-term AP typically induces other cardiovascular events, including myocardial infarction and heart failure, posing a serious threat to patient safety. However, AP's complex pathological mechanisms and developmental processes introduce significant challenges in the rapid diagnosis and accurate treatment of its different subtypes, including stable angina pectoris (SAP), unstable angina pectoris (UAP), and variant angina pectoris (VAP).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Isakson Center for Neurological Disease Research, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.

Background: The Apolipoprotein-E (APOE) ε4 gene variant is the strongest genetic risk factor for late-onset Alzheimer's Disease, but is not entirely predictive. Emerging evidence suggests environmental factors contribute to disease etiology, with epidemiological studies associating pesticide exposure with lower cognitive scores. Dichlorodiphenyltrichloroethane (DDT), a pesticide used extensively in the US until 1972, persists in trace amounts due to its long half-life, bioaccumulation, and existing dumpsites.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease and a leading cause of senile dementia. Accumulation of amyloid-β (Aβ) in the brains causes chronic neuroinflammation, synaptic loss, and neurovascular damage, which is thought to initiate decades-long AD pathogenesis. Recent clinical trials for anti-Aβ immunotherapy highlights the utility of biomarkers that faithfully reflect Aβ-related brain pathology to diagnose AD at the preclinical stage, to predict the onset and progression of the disease, and to assess the therapeutic efficacy of drugs.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

CSIR-CFTRI, Mysore, Karnataka, India.

Background: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by senile plaques, amyloid-beta (Aβ), and neuroinflammation. The key targets in the treatment of AD are inhibiting the production of amyloid-beta (Aβ), sphingomyelinase, and inflammation. Among the mechanisms, sphingolipids (specifically Ceramides) are recognized as distinctive mediators associated with the pathology of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!