Value of multiplex PCR for detection of antimicrobial resistance in samples retrieved from patients with orthopaedic infections.

BMC Microbiol

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Musculoskeletal Surgery (CMSC), Charitéplatz 1, 10117, Berlin, Germany.

Published: April 2020

Background: The performance of multiplex PCR (mPCR) for detection of antimicrobial resistance from clinical isolates is unknown. We assessed the ability of mPCR to analyse resistance genes directly from clinical samples. Patients with orthopedic infections were prospectively included. Phenotypical and genotypical resistance was evaluated in clinical samples (synovial and sonication fluid) where identical pathogens were identified by culture and mPCR.

Result: A total of 94 samples were analysed, including 60 sonication fluid and 34 synovial fluid samples. For coagulase-negative staphylococcus strains, mPCR detected resistance to oxacillin in 10 of 23 isolates (44%) and to rifampin in none of 6 isolates. For S. aureus isolates, detection rate of oxacillin and rifampin-resistance was 100% (2/2 and 1/1, respectively). Fluoroquinolone-resistance was confirmed by mPCR in all 3 isolates of Enterobacteriaceae, in enterococci resistance to aminoglycoside-high level was detected in 1 of 3 isolates (33%) and in streptococci resistance to macrolides/lincosamides in none of 2 isolates. The overall sensitivity for different pathogens and antimicrobials was 46% and specificity 95%, the median concordance was 80% (range, 57-100%). Full agreement was observed for oxacillin in S. aureus, vancomycin in enterococci, carbapenems/cephalosporins in Enterobacteriaceae and rifampin in Cutibacterium species.

Conclusion: The overall sensitivity for detection of antimicrobial resistance by mPCR directly from clinical samples was low. False-negative mPCR results occurred mainly in coagulase-negative staphylococci, especially for oxacillin and rifampin. However, the specificity of mPCR was high and a positive result reliably predicted antimicrobial resistance. Including universal primers in the PCR test assay may improve the detection rate but requires additional sequencing step.

Trial Registration: www.clinicaltrials.gov No. NCT02530229, registered at 21 August 2015 (retrospectively registered).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7155317PMC
http://dx.doi.org/10.1186/s12866-020-01741-7DOI Listing

Publication Analysis

Top Keywords

antimicrobial resistance
16
detection antimicrobial
12
clinical samples
12
resistance
9
multiplex pcr
8
directly clinical
8
sonication fluid
8
detection rate
8
isolates
7
samples
6

Similar Publications

A Conjugated Oligomer with Drug Efflux Pump Inhibition and Photodynamic Therapy for Synergistically Combating Resistant Bacteria.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China.

High expression of drug efflux pump makes antibiotics ineffective against bacteria, leading to drug-resistant strains and even the emergence of "superbugs". Herein, we design and synthesize a dual functional o-nitrobenzene (NB)-modified conjugated oligo-polyfluorene vinylene (OPFV) photosensitizer, OPFV-NB, which can depress efflux pump activity and also possesses photodynamic therapy (PDT) for synergistically overcoming drug-resistant bacteria. Upon light irradiation, the OPFV-NB can produce aldehyde active groups to covalently bind outer membrane proteins, such as tolerant colicin (TolC), blocking drug efflux of bacteria.

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance (AMR) is a significant problem in developing, low- and middle-income countries like Nepal. Community engagement can be an important means to address the problem. Knowledge, attitude, practice, and adherence of women regarding antibiotics and AMR was studied.

View Article and Find Full Text PDF

Multiplicity of type 6 secretion system toxins limits the evolution of resistance.

Proc Natl Acad Sci U S A

January 2025

Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom.

The bacterial type 6 secretion system (T6SS) is a toxin-injecting nanoweapon that mediates competition in plant- and animal-associated microbial communities. Bacteria can evolve de novo resistance against T6SS attacks, but resistance is far from universal in natural communities, suggesting key features of T6SS weaponry may act to limit its evolution. Here, we combine ecoevolutionary modeling and experimental evolution to examine how toxin type and multiplicity in attackers shape resistance evolution in susceptible competitors.

View Article and Find Full Text PDF

Multiple myeloma (MM)-induced bone disease affects not only patients' quality of life but also their overall survival. Our previous work demonstrated that the gut microbiome plays a crucial role in MM progression and drug resistance. However, the role of altered gut microbiota in MM bone disease remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!