Ion adsorption at solid-water interfaces is commonly described by interactions between specific surface sites and adsorbed ions in classical models. However, energetic contributions from non-site-specific ion-ion interactions have been less well understood. Here, we report nonclassical behaviors observed during competitive adsorption between Sr and Na/Rb at the negatively charged muscovite mica (001)-water interface, revealing apparent controls of adsorbed ion speciation over the interfacial reactivity. In the absence of competing cations, Sr adsorbs in approximately equivalent proportions of inner-sphere and outer-sphere complexes, whereas it adsorbs predominantly as an outer-sphere complex in the presence of Na/Rb. This transformation of adsorbed Sr speciation significantly decreases its adsorption strength, as indicated by the ∼15-fold shift in the Sr adsorption edge concentration, compared to that calculated from a classical Langmuir isotherm model developed on the basis of site-specific interactions. These observations highlight the importance of non-site-specific interactions in controlling the energetics of chemical reactions at the charged interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.0c00808 | DOI Listing |
Adv Biotechnol (Singap)
January 2025
School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China.
Low efficiency and high surface runoff of 2,4-dichlorophenoxyacetic acid (2,4-D) from agricultural field threaten crop yield severely. Layered double hydroxides (LDH) have shown promising adsorption properties for 2,4-D. However, the comparison of two environmentally friendly LDHs (i.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Norwegian University of Life Sciences, Department of Building and Environmental Technology, P.O. Box 5003, 1430 Ås, Norway.
The need for stringent phosphorus removal from domestic wastewater is increasing to mitigate eutrophication, while efficient phosphate reuse is critical due to the global phosphate crisis. Combining aluminum sulfate (ALS) with high molecular weight organic polymers achieved 95-99% removal of particles, turbidity, and phosphates, reducing ALS usage by 40%. We propose mechanisms to explain the enhanced treatment efficiency.
View Article and Find Full Text PDFWater Sci Technol
January 2025
China Construction Fifth Engineering Division Co., Ltd, Changsha, Hunan 410004, China.
Road runoff underwent treatment using a filter filled with sludge from drinking water treatment plants to assess its capacity for removing dissolved organic matter (DOM). This evaluation utilized resin fractionation, gel permeation chromatography, three-dimensional excitation-emission matrix fluorescence spectroscopy, and UV-Visible spectroscopy. The filter demonstrated enhanced efficiency in removing dissolved organic carbon, achieving removal rates between 70 and 80%.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
Per- and polyfluoroalkyl substances (PFAS) are a class of persistent organic compounds widely detected in the environments. Due to their chemical stability, physical adsorption has emerged as one of the most promising techniques for remediating PFAS-containing wastewater, while some newly synthesized functional absorbents in powder form suffer from separation issues. Inspired by mussel biology, we have successfully synthesized a porous spongy absorbent termed aminated polyurethane (PU-PDA-PANI) with over 99.
View Article and Find Full Text PDFSci Rep
January 2025
Hydrobiology Lab, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!