Ewing sarcoma is an aggressive pediatric cancer of enigmatic cellular origins typically resulting from a single translocation event t (11; 22) (q24; q12). The resulting fusion gene, , is toxic or unstable in most primary tissues. Consequently, attempts to model Ewing sarcomagenesis have proven unsuccessful thus far, highlighting the need to identify the cellular features which permit stable EWSR1-FLI1 expression. By re-analyzing publicly available RNA-Sequencing data with manifold learning techniques, we uncovered a group of Ewing-like tissues belonging to a developmental trajectory between pluripotent, neuroectodermal, and mesodermal cell states. Furthermore, we demonstrated that EWSR1-FLI1 expression levels control the activation of these developmental trajectories within Ewing sarcoma cells. Subsequent analysis and experimental validation demonstrated that the capability to resolve R-loops and mitigate replication stress are probable prerequisites for stable EWSR1-FLI1 expression in primary tissues. Taken together, our results demonstrate how EWSR1-FLI1 hijacks developmental gene programs and advances our understanding of Ewing sarcomagenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226175PMC
http://dx.doi.org/10.3390/cancers12040948DOI Listing

Publication Analysis

Top Keywords

ewing sarcoma
12
ewsr1-fli1 expression
12
primary tissues
8
ewing sarcomagenesis
8
stable ewsr1-fli1
8
ewsr1-fli1
5
reconstruction ewing
4
developmental
4
sarcoma developmental
4
developmental context
4

Similar Publications

Background: Ewing sarcoma is an EWSR1-rearranged aggressive malignancy that occurs commonly in bone and has small round blue cell morphology. A diagnostic challenge is presented in the cases of extraskeletal Ewing sarcoma involving solid organs, such as the uterus.

Case Report And Brief Literature Review: We present the case of a 54-year-old female with a large pelvic mass connected to the uterine cornua and retroperitoneal soft tissue.

View Article and Find Full Text PDF

sarcoma is rare and its clinical features remain unclear. Given the similarity in presentation, it is possible that previously reported cases of Ewing-like adamantinoma may have been sarcoma. The present case report describes a tumor in a 55-year-old man that was originally thought to be a Ewing-like adamantinoma, but was recently found to be an sarcoma following direct sequencing.

View Article and Find Full Text PDF

Ewing sarcoma (ES) is a malignant bone tumor prevalent among children and adolescents. Disulfidptosis represents a novel form of cell death; however, the mechanism of disulfidptosis in ES remains unclear. Our aim is to explore the disulfidptosis-related prognostic signature in ES.

View Article and Find Full Text PDF

Translocation: A Common Tumor Driver of Distinct Human Neoplasms.

Int J Mol Sci

December 2024

School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.

Cancer is among the leading causes of mortality in developed countries due to limited available therapeutic modalities and high rate of morbidity. Although malignancies might show individual genetic landscapes, recurring aberrations in the neoplastic genome have been identified in the wide range of transformed cells. These include translocations of frequently affected loci of the human genetic material like the Ewing sarcoma breakpoint region 1 () of chromosome 22 that results in malignancies with mesodermal origin.

View Article and Find Full Text PDF

Background: Paediatric sarcomas, including rhabdomyosarcoma, Ewing sarcoma and osteosarcoma, represent a group of malignancies that significantly contribute to cancer-related morbidity and mortality in children and young adults. These cancers share common challenges, including high rates of metastasis, recurrence or treatment resistance, leading to a 5-year survival rate of approximately 20% for patients with advanced disease stages. Despite the critical need, therapeutic advancements have been limited over the past three decades.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!