Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antibiotics are widely applied for plant cultivation in vitro to eliminate bacterial contamination. However, they can have both positive and negative effects on the cells of cultivated plants, and these effects largely depend on the type antibiotic used and its concentration. The objective of the present study was to estimate the effect of β-lactam antibiotics ampicillin (Amp) and cefotaxime (Cef) on microspore embryogenesis induction in vitro in the species. The performed experiments confirmed cefotaxime inhibits microspores in and , even in concentrations as low as 50 mg/L. The highest embryo yield was obtained for in the NLN-13 medium with added ampicillin in concentrations of 50-100 mg/L as an antimicrobial agent. This embryo yield was significantly higher than that obtained in a medium without supplemented antibiotics and two times higher than in the medium with added cefotaxime. Analogous results were obtained for and .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238966 | PMC |
http://dx.doi.org/10.3390/plants9040489 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!