Naringenin (NAR), a flavonoid present in a variety of fruits, vegetables and herbs, exhibits a wide range of pharmacological effects, including anticancer activity. Nevertheless, its application in cancer therapy is limited due to its low bioavailability at the tumour site because of its poor solubility in water and slow dissolution rate. To improve the therapeutic efficacy of NAR, emergent research is looking into using nanocarriers. Silk fibroin (SF), from the silkworm, is a biocompatible and biodegradable polymer with excellent mechanical properties and an amphiphilic chemistry that make it a promising candidate as a controlled release drug system. The aim of this work is to synthesize naringenin-loaded silk fibroin nanoparticles (NAR-SFNs) by dissolving the SF in the ionic liquid 1-ethyl-3-methylimidazolium acetate, using high-power ultrasounds and rapid desolvation in methanol followed by the adsorption of NAR. The NAR-SFNs were characterized by dynamic light scattering, Fourier transform infrared spectroscopy and thermogravimetric analysis. The drug loading content and encapsulation efficiency were calculated. The drug release profile best fitted a first order equation. The cytotoxicity effects of free NAR, bare silk fibroin nanoparticles (SFNs) and NAR-SFNs were assessed on HeLa and EA.hy926 cells via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results demonstrated the higher in vitro anticancer potential of synthesized NAR-SFNs than that of free NAR in HeLa cancer cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221656 | PMC |
http://dx.doi.org/10.3390/nano10040718 | DOI Listing |
J Texture Stud
February 2025
Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.
The increasing demand for protein-rich, plant-based foods has driven the development of meat analogs that closely mimic the texture and mouthfeel of animal meat. While plant-based fibrils and electrospun silk fibroin fibers have been explored for texture enhancement and scaffolding in both meat analogs and cell-based meats, the use of wet-spun fibroin protein fibers as a food ingredient remains underexplored. This study investigates the potential of wet-spun recombinant fibroin fibers to enhance the textural properties of meat analogs.
View Article and Find Full Text PDFSci Rep
January 2025
Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
Sci Rep
January 2025
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
Front Chem
December 2024
Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
Introduction: Two-dimensional (2D) MXene, recognized for its outstanding physical and chemical properties,has gained attention as a promising material in the biomedical field. However, its potential in tissue engineering applications remains underexplored. This study focuses on synthesizing SF-MXene composite electrospun fibers and evaluating their suitability for biomedical applications.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Faculty of Science, Damanhour University, Damanhour, Egypt.
The effective adsorption of (mercuric ions) Hg onto synthesized and characterized composite materials based on calcium alginate (CG), zinc metal-organic farmwork (MOF-2), and silk fibroin powder (SF) has been reported in this study. Under various application conditions, the adsorption capacities of silk fibroin powder/zinc metal organic framework/alginate composite (ZSG) were compared with those of the other individual solid materials. These solid adsorbents materials were characterized by various physicochemical techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!