The Endothelium as a Driver of Liver Fibrosis and Regeneration.

Cells

Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain.

Published: April 2020

Liver fibrosis is a common feature of sustained liver injury and represents a major public health problem worldwide. Fibrosis is an active research field and discoveries in the last years have contributed to the development of new antifibrotic drugs, although none of them have been approved yet. Liver sinusoidal endothelial cells (LSEC) are highly specialized endothelial cells localized at the interface between the blood and other liver cell types. They lack a basement membrane and display open channels (fenestrae), making them exceptionally permeable. LSEC are the first cells affected by any kind of liver injury orchestrating the liver response to damage. LSEC govern the regenerative process initiation, but aberrant LSEC activation in chronic liver injury induces fibrosis. LSEC are also main players in fibrosis resolution. They maintain liver homeostasis and keep hepatic stellate cell and Kupffer cell quiescence. After sustained hepatic injury, they lose their phenotype and protective properties, promoting angiogenesis and vasoconstriction and contributing to inflammation and fibrosis. Therefore, improving LSEC phenotype is a promising strategy to prevent liver injury progression and complications. This review focuses on changes occurring in LSEC after liver injury and their consequences on fibrosis progression, liver regeneration, and resolution. Finally, a synopsis of the available strategies for LSEC-specific targeting is provided.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226820PMC
http://dx.doi.org/10.3390/cells9040929DOI Listing

Publication Analysis

Top Keywords

liver injury
20
liver
12
liver fibrosis
8
endothelial cells
8
fibrosis
7
lsec
7
injury
6
endothelium driver
4
driver liver
4
fibrosis regeneration
4

Similar Publications

Metabolic Dysfunction-Associated Steatotic Liver Disease and the Cardiovascular System.

Trends Cardiovasc Med

January 2025

Department of Cardiology, Euroclinic Hospital, Athens, Greece; First Department of Cardiology, Athens University School of Medicine, Athens, Greece. Electronic address:

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty-liver disease, is an important and rising health issue with a link with atherosclerotic cardiovascular (CV) disease (CVD), affecting ∼25-30% of the adults in the general population; in patients with diabetes, its prevalence culminates to ∼70%; its evolutive form, nonalcoholic steatohepatitis, is estimated to be the main cause of liver transplantation in the future. MASLD is a multisystem disease that affects, besides the liver, extra-hepatic organs and regulatory pathways; it raises the risk of type 2 diabetes mellitus (T2D), CVD, and chronic kidney disease; the disease may also progress to hepatocellular carcinoma. Its diagnosis requires hepatic steatosis and at least one cardiometabolic risk factor and the exclusion of both significant alcohol consumption and other competing causes of chronic liver disease.

View Article and Find Full Text PDF

Aescin ameliorates alcohol-induced liver injury. A possible implication of ROS / TNF-alpha / p38MAPK / caspase-3 signalling.

Food Chem Toxicol

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kaferelsheikh University, Kaferelsheikh, Egypt. Electronic address:

Alcoholic liver disease (ALD) is a commonly known liver disease mediated by prolonged alcohol consumption. Aescin is a triterpene saponin that can manage several conditions, including brain trauma, arthritis, venous congestion, stroke, and thrombophlebitis. Even so, studies illustrating the aescin role in ALD are scarce.

View Article and Find Full Text PDF

Gender-Equity Model for Liver Allocation using Artificial Intelligence (GEMA-AI) for waiting list liver transplant prioritization.

Clin Gastroenterol Hepatol

January 2025

Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain. Campus Universitario de Rabanales, Albert Einstein Building. Ctra. N-IV, Km. 396. 14071, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain. Av. Menéndez Pidal, s/n, Poniente Sur, 14004 Córdoba, Spain.

Background & Aims: We aimed to develop and validate an artificial intelligence score (GEMA-AI) to predict liver transplant (LT) waiting list outcomes using the same input variables contained in existing models.

Methods: Cohort study including adult LT candidates enlisted in the United Kingdom (2010-2020) for model training and internal validation, and in Australia (1998-2020) for external validation. GEMA-AI combined international normalized ratio, bilirubin, sodium, and the Royal Free Glomerular Filtration Rate in an explainable Artificial Neural Network.

View Article and Find Full Text PDF

Visualizing enterohepatic circulation in vivo by sensitive F MRI with a fluorinated ferrous chelate-based small molecule probe.

Biomaterials

January 2025

The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Zhongshan Hospital, Xiamen University, Xiamen 361004, China. Electronic address:

Enterohepatic circulation (EHC) is a critical biological process for the normal regulation of many endogenous biomolecules and the increased retention of various exogenous substances. The status of EHC is closely related to the ordinary functioning of several digestive organs. However, it remains a challenge to achieve in vivo real-time visualization of this process.

View Article and Find Full Text PDF

The research sought to assess the therapeutic impact of resveratrol by biochemical, immunohistochemical, and histopathological analyses in a TiO-induced liver fibrosis model. Titanium dioxide (100 mg/kg body weight) was delivered for 15 days to induce liver fibrosis, either alone or in conjunction with resveratrol (30 mg/kg body weight) therapy for the same duration. Resveratrol has been identified as a crucial therapeutic drug that provides an alternative treatment method for TiO-induced liver fibrosis by mitigating inflammation, oxidative stress, and the expressions of α-SMA and 8-OHdG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!