A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sensing Ability of Ferroelectric Oxide Nanowires Grown in Templates of Nanopores. | LitMetric

Nanowires of ferroelectric potassium niobate were grown by filling nanoporous templates of both side opened anodic aluminum oxide (AAO) through radiofrequency vacuum sputtering for multisensor fabrication. The precise geometrical ordering of the AAO matrix led to well defined single axis oriented wire-shaped material inside the pores. The sensing abilities of the samples were studied and analyzed in terms of piezoelectric and pyroelectric response and the results were compared for different length of the nanopores (nanotubes)-1.3 µm, 6.3 µm and 10 µm. Based on scanning electronic microscopy, elemental and microstructural analyses, as well as electrical measurements at bending and heating, the overall sensing performance of the devices was estimated. It was found that the produced membrane type elements, consisting potassium niobate grown in AAO template exhibited excellent piezoelectric response due to the increased specific area as compared to non-structured films, and could be further enhanced with the nanowires length. The piezoelectric voltage increased linearly with 16 mV per micrometer of nanowire's length. At the same time the pyroelectric voltage was found to be less sensitive to the nanowires length, changing its value at 400 nV/µm. This paper provides a simple and low-cost approach for nanostructuring ferroelectric oxides with multisensing application, and serves as a base for further optimization of template based nanostructured devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179016PMC
http://dx.doi.org/10.3390/ma13071777DOI Listing

Publication Analysis

Top Keywords

potassium niobate
8
niobate grown
8
µm µm
8
nanowires length
8
sensing ability
4
ability ferroelectric
4
ferroelectric oxide
4
nanowires
4
oxide nanowires
4
nanowires grown
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!