AI Article Synopsis

  • * Researchers hypothesized that lower FPR2 expression in first-trimester placentas of women who later experience FGR is linked to poor trophoblast function and growth issues.
  • * Through experiments involving placental tissue samples and cell lines, the study found significant reductions in FPR2 gene and protein levels, revealing that FPR2 is crucial for placental development and may contribute to the occurrence of small-for-gestation age (SGA) and FGR.

Article Abstract

We reported earlier that an anti-inflammatory small peptide receptor-formyl peptide receptor-2 (FPR2) was significantly decreased in placentas from third trimester pregnancies complicated with fetal growth restriction (FGR), compared to placentas from uncomplicated control pregnancies, suggesting FPR2 may play a role in the development of FGR. The aim of this study is to investigate whether the actions of FPR2 alters placental growth process in humans. Accordingly, using small-for-gestation age (SGA) as a proxy for FGR, we hypothesize that FPR2 expression is decreased in first-trimester placentas of women who later manifest FGR, and contributes to aberrant trophoblast function and the development of FGR. Chorionic villus sampling (CVS) tissues were collected at 10-12 weeks gestation in 70 patients with singleton fetuses; surplus tissue was used. Real-time PCR and immunoassays were performed to quantitate FPR2 gene and protein expression. Silencing of FPR2 was performed in two independent, trophoblast-derived cell lines, HTR-8/ and JEG-3 to investigate the functional consequences of FPR2 gene downregulation. mRNA relative to was significantly decreased in placentae from SGA-pregnancies ( = 28) compared with controls ( = 52) ( < 0.0001). Placental FPR2 protein was significantly decreased in SGA compared with control ( = 10 in each group, < 0.05). Proliferative, migratory and invasive potential of the human placental-derived cell lines, HTR-8/ and JEG-3 were significantly reduced in treated cells compared with control groups. Down-stream signaling molecules, and were identified as target genes of FPR2 action in the trophoblast-derived cell lines and in SGA and control chorionic villous tissues. FPR2 is a novel regulator of key molecular pathways and functions in placental development, and its decreased expression in women destined to develop FGR reinforces a placental origin of SGA/FGR, and that it contributes to causing the development of SGA/FGR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226808PMC
http://dx.doi.org/10.3390/cells9040921DOI Listing

Publication Analysis

Top Keywords

fpr2
12
cell lines
12
placental fpr2
8
small-for-gestation age
8
development fgr
8
fpr2 gene
8
trophoblast-derived cell
8
lines htr-8/
8
htr-8/ jeg-3
8
compared control
8

Similar Publications

Introduction: The choroid plexus is located in the cerebral ventricles. It consists of a stromal core and a single layer of cuboidal epithelial cells that forms the blood-cerebrospinal barrier. The main function of the choroid plexus is to produce cerebrospinal fluid.

View Article and Find Full Text PDF

Acute rejection (AR) is a common complication in the early stage after kidney transplantation. Some studies have shown that the occurrence of AR after kidney transplantation may further affect the development of tumors, and both AR and tumor development are related to immune cells and immune genes, so it is particularly important to diagnose the occurrence of AR at an early stage and to analyze the correlation between AR and tumors. In this study, we applied bioinformatics techniques for differential expression analysis and weighted gene co-expression network analysis analysis of AR patients to obtain differentially expressed genes and modular genes significantly associated with AR, respectively, so as to obtain their intersecting genes with immune-related genes; 21 intersecting genes were screened by lasso regression and Boruta algorithm to obtain the genes, and finally, the feature genes that were significantly associated with the dependent variable were further obtained by single-factor and multi-factor logistic regression.

View Article and Find Full Text PDF

Background: The brain is protected from invading pathogens by the blood-brain barrier (BBB) and the innate immune system. Pattern recognition receptors play a crucial role in detecting bacteria and initiating the innate immune response. Among these are G-protein-coupled formyl peptide receptors (FPR), which are expressed by immune cells in the central nervous system.

View Article and Find Full Text PDF

Comprehensive analysis of heterogeneity and cell-cell interactions in Crohn's disease reveals novel location-specific insights.

J Adv Res

December 2024

Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Introduction: In Crohn's disease (CD), lesions are mainly distributed in a segmental manner, with the primary sites of involvement being the ileum and colon. Heterogeneity in colon and ileum results in location-specific clinical presentations and therapeutic responses. Mucosal healing tends to be more readily and quickly achieved in the colon than in the ileum, where lesions are more likely to develop into complex behaviors.

View Article and Find Full Text PDF

Asthma, is a common, significant and diverse condition marked by persistent airway inflammation, with a major impact on human health worldwide. The predisposing factors for asthma are complex and widespread. The beneficial effects of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) in asthma have increasingly attracted attention recently.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!