Kac's isospectrality question revisited in neutrino billiards.

Phys Rev E

School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA.

Published: March 2020

"Can one hear the shape of a drum?" Kac raised this famous question in 1966, referring to the possibility of the existence of nonisometric planar domains with identical Dirichlet eigenvalue spectra of the Laplacian. Pairs of nonisometric isospectral billiards were eventually found by employing the transplantation method which was deduced from Sunada's theorem. Our main focus is the question to what extent isospectrality of nonrelativistic quantum billiards is present in the corresponding relativistic case, i.e., for massless spin-1/2 particles governed by the Dirac equation and confined to a domain of corresponding shape by imposing boundary conditions on the wave function components. We consider those for neutrino billiards [Berry and Mondragon, Proc. R. Soc. London A 412, 53 (1987)2053-916910.1098/rspa.1987.0080] and demonstrate that the transplantation method fails and thus isospectrality is lost when changing from the nonrelativistic to the relativistic case. To confirm this we compute the eigenvalues of pairs of neutrino billiards with the shapes of various billiards which are known to be isospectral in the nonrelativistic limit. Furthermore, we investigate their spectral properties, in particular, to find out whether not only their eigenvalues but also the fluctuations in their spectra and their length spectra differ.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.101.032215DOI Listing

Publication Analysis

Top Keywords

neutrino billiards
12
transplantation method
8
relativistic case
8
billiards
6
kac's isospectrality
4
isospectrality question
4
question revisited
4
revisited neutrino
4
billiards "can
4
"can hear
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!