We investigate macroscopic two-fluid effects in magnetorheological fluids generalizing a one-fluid model studied before. In the bulk of the paper we use a model in which the carrier fluid, with density ρ_{1}, moves with velocity v_{1}, while the magnetic component (density ρ_{2}) and, therefore, the magnetization and the magnetic-field-induced relaxing strain field move with velocity v_{2}. In the framework of macroscopic dynamics we find, in particular, reversible dynamic and dissipative cross-coupling terms between the magnetization and the velocity difference. Experiments to detect some of these cross-coupling terms are suggested. We also compare the results of the two-fluid model presented here with two-fluid models available for electrorheological fluids. In two appendices we discuss the simplifying assumptions made to arrive at the model used in this paper and we also outline how to detect potential deviations from this model.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.101.032601DOI Listing

Publication Analysis

Top Keywords

macroscopic two-fluid
8
two-fluid effects
8
effects magnetorheological
8
magnetorheological fluids
8
cross-coupling terms
8
model
5
fluids investigate
4
investigate macroscopic
4
fluids generalizing
4
generalizing one-fluid
4

Similar Publications

In this paper, the underlying problem with the color-gradient (CG) method in handling density-contrast fluids is explored. It is shown that the CG method is not fluid invariant. Based on nondimensionalizing the CG method, a phase-field interface-capturing model is proposed which tackles the difficulty of handling density-contrast fluids.

View Article and Find Full Text PDF

Two-fluid kinetic theory for dilute polymer solutions.

Phys Rev E

October 2022

Engineering Mechanics Unit, JNCASR, Jakkur, Bangalore 560064, India.

We provide a Boltzmann-type kinetic description for dilute polymer solutions based on two-fluid theory. This Boltzmann-type description uses a quasiequilibrium based relaxation mechanism to model collisions between a polymer dumbbell and a solvent molecule. The model reproduces the desired macroscopic equations for the polymer-solvent mixture.

View Article and Find Full Text PDF

Microfluidic Production of Zwitterion Coating Microcapsules with Low Foreign Body Reactions for Improved Islet Transplantation.

Small

July 2022

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.

Islet transplantation is a promising strategy for type 1 diabetes mellitus (T1DM) treatment, whereas implanted-associated foreign body reaction (FBR) usually induces the necrosis of transplanted islets and leads to the failure of glycemic control. Benefiting from the excellent anti-biofouling property of zwitterionic materials and their successful application in macroscopic implanted devices, microcapsules with zwitterionic coatings may be promising candidates for islet encapsulation. Herein, a series of zwitterion-coated core-shell microcapsules is fabricated (including carboxybetaine methacrylate [CBMA]-coated gelatin methacrylate [GelMA] [CBMA-GelMA], sulfobetaine methacrylate [SBMA]-coated GelMA [SBMA-GelMA], and phosphorylcholine methacrylate [MPC]-coated GelMA [MPC-GelMA]) by one-step photopolymerization of inner GelMA and outer zwitterionic monomers via a handmade two-fluid microfluidic device and it is demonstrated that they can effectively prevent protein adsorption, cell adhesion, and inflammation in vitro.

View Article and Find Full Text PDF

We present the macroscopic dynamics of polar nematic liquid crystals in a two-fluid context. We investigate the case of a nonchiral as well as of a chiral solvent. In addition, we analyze how the incorporation of a strain field for polar nematic gels and elastomers in a solvent modifies the macroscopic dynamics.

View Article and Find Full Text PDF

We present the macroscopic dynamic description of a ferromagnetic nematic, where the nematic part and the magnetic part can move relative to each other. The relative velocity that describes such movements can be a slowly relaxing variable. Its couplings to the nematic and the magnetic degrees of freedom are particularly interesting since the symmetry properties (behavior under spatial inversion and time reversal) of the three vectorial quantities involved are all different.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!