We consider two-dimensional turbulence in the presence of a condensate. The nondiagonal correlation functions of the Lagrangian accelerations are calculated, and it is shown that they have the same universality properties as the nondiagonal correlation functions of the velocity fluctuations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.101.033108 | DOI Listing |
PLoS One
January 2025
Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo, Zhengjiang, China.
The hydrodynamic performance of a Savonius type turbine (S-type turbine) in wave field is studied. The method of combining numerical simulation with physical experiment is adopted.Based on linear wave theory and turbulence model, Star CCM+numerical simulation software is used for digital modeling, and overlapping grid technology is used for grid modeling.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Mathematics, College of Science, Taibah University, Al-Madinah, Al-Munawarah, Saudi Arabia.
In this paper, the unified approach is used in acquiring some new results to the coupled Maccari system (MS) in Itô sense with multiplicative noise. The MS is a nonlinear model used in hydrodynamics, plasma physics, and nonlinear optics to represent isolated waves in a restricted region. We provide new results with complicated structures to this model, including hyperbolic, trigonometric and rational function solutions.
View Article and Find Full Text PDFPhys Rev E
November 2024
Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208106, India.
The hydrodynamic and thermal interactions between neighboring vapor bubbles on hot surfaces play a crucial role in heat transport and flow characteristics. To investigate these interactions, we conducted numerical simulations of saturated vapor bubbles in a two-dimensional square enclosure filled with liquid water. The water was heated at the bottom and cooled at the top to replicate boiling at 100^{∘}C and normal atmospheric pressure.
View Article and Find Full Text PDFHeliyon
August 2024
Dipartimento Energia, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, TO, Italy.
In this study, the implementation of a high-order spatial discretization method into a Finite Volume solver is presented. Specific emphasis is put on the analysis of the performance over selected turbomachinery test cases. High-order numerical discretization is achieved by adopting the cell-centered Least-Square reconstruction, which is implemented in the in-house solver HybFlow.
View Article and Find Full Text PDFChaos
December 2024
Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA.
Turbulence is a widely observed state of fluid flows, characterized by complex, nonlinear interactions between motions across a broad spectrum of length and time scales. While turbulence is ubiquitous, from teacups to planetary atmospheres, oceans, and stars, its manifestations can vary considerably between different physical systems. For instance, three-dimensional turbulent flows display a forward energy cascade from large to small scales, while in two-dimensional turbulence, energy cascades from small to large scales.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!