A novel 2D nanomaterial, TiCT MXene, added conductivity and reinforcement to a common elastomer, nitrile butadiene rubber (NBR). X-ray diffraction revealed the intercalation of lithium ions and elastomer chains into the MXene interlayer spacing, which enabled exfoliation in the elastomer. The reaction between MXene and NBR was proved by a stepwise Fourier transform infrared spectroscopy. With increase in MXene fractions, electrical and thermal conductivity of the composite increased to 9 × 10 S cm and 0.69 W m K, respectively. At only 2.8 vol% MXene, a swelling ratio of 1.61 was achieved, representing a 75% reduction compared to NBR containing either graphene or carbon nanotubes at the same filler fraction. Tensile tests showed that with the increase in MXene content, Young's modulus increased while both tensile strength and elongation at break first increased and then decreased. Overall, latex compounding proved to be an efficient technique for forming NBR/MXene nanocomposites. The revealed reaction between MXene and NBR to create functional polymer nanocomposites could provide a platform for utilising MXene for other polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab88ebDOI Listing

Publication Analysis

Top Keywords

mxene
9
electrical thermal
8
thermal conductivity
8
reaction mxene
8
mxene nbr
8
increase mxene
8
elastomer
4
elastomer nanocomposites
4
nanocomposites mxene
4
mxene mechanical
4

Similar Publications

Phosphorus-doped nickel-iron hydroxides/MXene for efficient electrochemical water oxidation.

Chem Commun (Camb)

January 2025

School of Materials Science and Engineering, CNPC-CZU Innovation Alliance, Key Laboratory of Materials Surface Science and Technology of Jiangsu Province Higher Education Institutes, Changzhou University, Changzhou, 213164, Jiangsu, China.

Herein, NiFeP/TiC@NF was synthesized from a hydrothermal process and chemical conversion, and exhibited a low overpotential of 177 mV at = 50 mA cm, a low Tafel slope of 56 mV dec, and a very competitive stable activity in alkaline electrolyte, proposing a strategy for efficient OER and overall water splitting.

View Article and Find Full Text PDF

Microwave assisted synthesis of TiC-MXene for supercapacitor application.

Chem Commun (Camb)

January 2025

Departamento de Ingeniería Mecánica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Beauchef, 8370456, Santiago, Chile.

Two-dimensional TiC MXene has been successfully synthesized using an ultrafast microwave-assisted method. Material characterization studies have confirmed the formation of a layered MXene structure. Additionally, the electrochemical performance observed for the synthesized material indicates its promising potential for use in supercapacitor applications.

View Article and Find Full Text PDF

Fast fabrication of stimuli-responsive MXene-based hydrogels for high-performance actuators with simultaneous actuation and self-sensing capability.

J Colloid Interface Sci

January 2025

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China. Electronic address:

Poly(N-isopropylacrylamide) (PNIPAM) composite hydrogels have recently emerged as promising candidates for soft hydrogel actuators. However, developing a facile and fast method to obtain multifunctional PNIPAM hydrogel actuators with simulating biological versatility remains a major challenge. Herein, we developed a fast-redox initiation system to prepare PNIPAM/sodium carboxymethyl cellulose (CMC)/TCT MXene nanocomposite hydrogel with multidirectional actuating behaviors and improved mechanical properties.

View Article and Find Full Text PDF
Article Synopsis
  • Glucose sensing is essential for managing diabetes, and this study explores NbCT-selenium nanoparticles for effective nonenzymatic glucose detection.
  • The composite material was characterized using techniques like scanning and transmission electron microscopy, and it was tested on a gold disc electrode in an alkaline solution.
  • The sensor operates at a low overpotential of 0.16 V, demonstrating a detection range of 2 to 30 mM, with a notable sensitivity of 4.15 µA mM cm and a detection limit of 1.1 mM.
View Article and Find Full Text PDF

Preparation and Applications of Multifunctional MXene/Tussah Silk Fabric.

Materials (Basel)

January 2025

College of Textiles and Garment, Liaodong University, Dandong 118003, China.

The development of functional textiles has become a key focus in recent years, aiming to meet the diverse requirements of modern society. MXene has excellent conductivity, hydrophilicity, and UV resistance, and is widely used in electromagnetic shielding, sensors, energy storage, and photothermal conversion. Tussah silk (TS) is a unique natural textile raw material and has a unique jewelry luster, natural luxury, and a smooth and comfortable feel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!