A novel 2D nanomaterial, TiCT MXene, added conductivity and reinforcement to a common elastomer, nitrile butadiene rubber (NBR). X-ray diffraction revealed the intercalation of lithium ions and elastomer chains into the MXene interlayer spacing, which enabled exfoliation in the elastomer. The reaction between MXene and NBR was proved by a stepwise Fourier transform infrared spectroscopy. With increase in MXene fractions, electrical and thermal conductivity of the composite increased to 9 × 10 S cm and 0.69 W m K, respectively. At only 2.8 vol% MXene, a swelling ratio of 1.61 was achieved, representing a 75% reduction compared to NBR containing either graphene or carbon nanotubes at the same filler fraction. Tensile tests showed that with the increase in MXene content, Young's modulus increased while both tensile strength and elongation at break first increased and then decreased. Overall, latex compounding proved to be an efficient technique for forming NBR/MXene nanocomposites. The revealed reaction between MXene and NBR to create functional polymer nanocomposites could provide a platform for utilising MXene for other polymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab88eb | DOI Listing |
Chem Commun (Camb)
January 2025
School of Materials Science and Engineering, CNPC-CZU Innovation Alliance, Key Laboratory of Materials Surface Science and Technology of Jiangsu Province Higher Education Institutes, Changzhou University, Changzhou, 213164, Jiangsu, China.
Herein, NiFeP/TiC@NF was synthesized from a hydrothermal process and chemical conversion, and exhibited a low overpotential of 177 mV at = 50 mA cm, a low Tafel slope of 56 mV dec, and a very competitive stable activity in alkaline electrolyte, proposing a strategy for efficient OER and overall water splitting.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Departamento de Ingeniería Mecánica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Beauchef, 8370456, Santiago, Chile.
Two-dimensional TiC MXene has been successfully synthesized using an ultrafast microwave-assisted method. Material characterization studies have confirmed the formation of a layered MXene structure. Additionally, the electrochemical performance observed for the synthesized material indicates its promising potential for use in supercapacitor applications.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China. Electronic address:
Poly(N-isopropylacrylamide) (PNIPAM) composite hydrogels have recently emerged as promising candidates for soft hydrogel actuators. However, developing a facile and fast method to obtain multifunctional PNIPAM hydrogel actuators with simulating biological versatility remains a major challenge. Herein, we developed a fast-redox initiation system to prepare PNIPAM/sodium carboxymethyl cellulose (CMC)/TCT MXene nanocomposite hydrogel with multidirectional actuating behaviors and improved mechanical properties.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India.
Materials (Basel)
January 2025
College of Textiles and Garment, Liaodong University, Dandong 118003, China.
The development of functional textiles has become a key focus in recent years, aiming to meet the diverse requirements of modern society. MXene has excellent conductivity, hydrophilicity, and UV resistance, and is widely used in electromagnetic shielding, sensors, energy storage, and photothermal conversion. Tussah silk (TS) is a unique natural textile raw material and has a unique jewelry luster, natural luxury, and a smooth and comfortable feel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!