The present study investigated the possibility of valorizing rape straw through anaerobic digestion and the possibility of improving biomethane yield by pretreatment with HSO, combined HSO with steam explosion (SE) and SE combined with superfine grinding (SFG). To evaluate the pretreatment method efficiency, several analytical techniques were applied. Additionally, the performance of co-digesting of cattle manure (CM) with pretreated rape straw (PRS) at different ratios was evaluated. The results showed that combined pretreatment could dissolve the lignocellulosic fiber structure, which positively stimulated methane yield. The highest cumulative CH yield (CMY) of 305.7 mLgVS was achieved by combined SE at 180 °C for 5 min with SFG, which was 77.84% higher than the untreated. The CMY was further improved by 11.4-59% higher than the control (CM) using co-digestion. This study confirmed that, under optimal parameters of AD, pretreatment with SEG180 could significantly boost the CMY from co-digestion of CM and PRS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2020.123311 | DOI Listing |
Microorganisms
January 2025
Microbiology Laboratory, Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania.
Slow decomposition rates of cereal crop residues can lead to agronomic challenges, such as nutrient immobilization, delayed soil warming, and increased pest pressures. In this regard, microbial inoculation with efficient strains offers a viable and eco-friendly solution to accelerating the decomposition process of crop residues. However, this solution often focuses mostly on selecting microorganisms based on the appropriate enzymic capabilities and neglects the metabolic versatility required to utilize both structural and non-structural components of residues.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Agricultural Resources and Environment Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
Ammonia (NH) volatilization caused by urea application has negative implications for human health, environmental quality, and the value of nitrogen fertilizers. It remains to be investigated how management strategies should be adopted to not only reduce NH volatilization but also improve nitrogen use efficiency (NUE) in the agriculture industry at present. Hence, a two-year field trial, including subplots, was conducted to simultaneously evaluate the effects of mulching treatments (NM: non-mulching; SM: straw mulching) and different fertilizer treatments (U: urea; U + NBPT: urea plus 1% N-(n-butyl) thiophosphoric triamide; U + CRU: the mixture of urea and controlled-release urea at a 3:7 ratio; U + OF: urea plus commercial organic fertilizer at a 3:7 ratio) on NH volatilization, crop production, and NUE in an oilseed rape-maize rotation system in the sloping farmland of purple soil in southwestern China between 2021 and 2023.
View Article and Find Full Text PDFEnviron Res
February 2025
Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
Environ Res
December 2024
College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, PR China.
Under the dual pressures of food security and soil cadmium (Cd) pollution in China, the use of an oilseed rape-rice rotation system and phytoremediation has been proposed as an effective measure to extract heavy metals from soil, achieve safe rice production, and alleviate soil heavy metal stress. A three-year field rotation experiment by straw removal was conducted in light to moderate Cd-contaminated soil in Hunan, China. The experiment involved rotating two oilseed rape varieties, LSYH and ZYZ, with two rice varieties, the low-accumulation variety XWX and the high-accumulation variety TYHZ.
View Article and Find Full Text PDFMicroorganisms
September 2024
Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot 010031, China.
To investigate the effects of the combined addition of and sucrose on the fermentation weight loss (FWL), fermentation quality, and microbial community structure of ensiled rape straw under varying packing density conditions. After harvesting, the rapeseed straw was collected, cut into 1-2 cm pieces, and sprayed with sterile water to adjust the moisture content to 60%. The straw was then divided into two groups: one treated with additives (1 × 10 CFU/g fresh material of and 10 kg/t fresh material of sucrose), and the other sprayed with an equivalent amount of sterile water as the control (CK).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!