Caffeate 3-O-methyltransferase (COMT) catalyzes the methylation of the 3-hydroxyl group of caffeate to produce ferulate, an important precursor of the lignin biosynthesis. As a crucial drawback for biofuel production, lignin limits the enzymatic hydrolysis of polysaccharides to result in fermentable sugars. We hypothesized that a controlled inhibition of maize COMT can be an efficient approach to reduce ferulate and lignin, thus improving the saccharification process. First, we applied in silico techniques to prospect potential inhibitors of ZmaysCOMT, and the nitrocatechol entacapone was selected. Second, in vitro assays confirmed the inhibitory effect of entacapone on maize COMT. Finally, in vivo experiments revealed that entacapone reduced the contents of cell-wall-esterified hydroxycinnamates and increased saccharification of stems (18%) and leaves (70%), without negatively affecting maize growth and lignin biosynthesis. This non-genetically modified approach can be an alternative strategy to facilitate the enzymatic hydrolysis of biomass polysaccharides and increase saccharification for bioethanol production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2020.03.053DOI Listing

Publication Analysis

Top Keywords

maize growth
8
lignin biosynthesis
8
enzymatic hydrolysis
8
maize comt
8
lignin
5
entacapone
4
entacapone improves
4
saccharification
4
improves saccharification
4
saccharification lignin
4

Similar Publications

ZmGolS1 underlies natural variation of raffinose content and salt tolerance in maize.

J Genet Genomics

December 2024

State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:

Salt stress significantly inhibits crop growth and development, and mitigating this can enhance salt tolerance in various crops. Previous studies have shown that regulating saccharide biosynthesis is a key aspect of plant salt tolerance; however, the underlying molecular mechanisms remain largely unexplored. In this study, we demonstrate that overexpression of a salt-inducible galactinol synthase gene, ZmGolS1, alleviates salt-induced growth inhibition, likely by promoting raffinose synthesis.

View Article and Find Full Text PDF

Plant-derived biostimulants have gained attention in agricultural practices for their potential to enhance crop quality and resilience. In this study, we investigated the effects of applying a maize gluten-derived protein hydrolysate at the soil level in vineyards on berry quality in a table grape variety, the Black Magic early table grapevine, during veraison. Our results demonstrate significant improvements in various parameters 14 days after application, including increased anthocyanin levels, enhanced sugar accumulation, and larger berry diameter while maintaining berry firmness.

View Article and Find Full Text PDF

Sinomonas gamaensis NEAU-HV1 remodels the IAA14-ARF7/19 interaction to promote plant growth.

New Phytol

December 2024

Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.

Sinomonas species typically reside in soils or the rhizosphere and can promote plant growth. Sinomonas enrichment in rhizospheric soils is positively correlated with increases in plant biomass. However, the growth promotion mechanisms regulated by Sinomonas remain unclear.

View Article and Find Full Text PDF

Microbiota-dependent and -independent autoimmunity in plants.

Trends Plant Sci

December 2024

Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA. Electronic address:

In a recent study to identify arabidopsis (Arabidopsis thaliana) genes involved in maintaining normal leaf microbiota, Cheng et al. discovered TIP GROWTH DEFECTIVE1 (TIP1) encoding an S-acyltransferase. The tip1 mutant exhibits abnormal microbiota levels and phenotypes resembling autoimmune mutants.

View Article and Find Full Text PDF

[Effect of Organic Fertilizer Replacing Nitrogen Fertilizer on Major Grain Yield in China].

Huan Jing Ke Xue

January 2025

School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China.

To comprehensively assess the changing pattern of organic fertilizer substitution with nitrogen fertilizer on the yield of major grains in China, with 102 literature as the research object, through Meta-analysis we quantitatively explored the impacts of soil physicochemical properties, climatic conditions, and different nitrogen fertilizer replacement rates and supplemental application amounts. The results showed that the replacement of nitrogen fertilizer by organic fertilizer could increase crop yields compared with those from the application of nitrogen fertilizer alone, and soil quick-acting potassium content, pH, and annual average temperature had the most significant effects on the yields of the three major grains. When the nitrogen fertilizer replacement rate and the amount of supplemental nitrogen fertilizer applied were 31.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!