Organoarsenicals remediation requires degrading organoarsenicals and simultaneously immobilizing the resulted inorganic arsenic, and is thus a great challenge. In this study, a simulated solar light driven Fe(III)/Fe(II) cycle strategy was developed to degrade roxarsone and immobilize the generated inorganic arsenic via tuning the degree of Fe(III) hydrolysis. At pH values of 2.0 and 3.0, the hydrolysis of Fe(III) in the solution was suppressed to produce photoreactive Fe(III)-hydroxyl complexes, which could be excited by simulated solar light to generate OH for 85.3 % of roxarsone degradation into arsenate within 60 min. Density functional theory calculations suggested that Fe(OH)(HO) with lower energy separation gap was the most photoactive Fe(III)-hydroxyl complex for OH generation. With further increasing pH value to 6.0, the hydrolysis of Fe(III) was promoted to precipitate the arsenate for its immobilization, accompanying with the decrease of final iron ions and arsenate concentrations to 0.012 mmol L and 58 μg L, respectively. Meanwhile, the undegraded roxarsone was also adsorbed by the precipitate, increasing the overall roxarsone removal efficiency to 99.0 %. This study offers a promising strategy for the efficient organoarsenicals treatment, and also sheds light on the dual effects of iron based materials in organic pollutants degradation and heavy metal ions immobilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2019.121635 | DOI Listing |
Sci Rep
January 2025
Department of Physical Chemistry, University of Cádiz, 11510, Puerto Real, Spain.
To reduce greenhouse emissions and producing electricity with the smallest environmental impact, developing solar power technology is one of the most important milestones to achieve. Thus, to improve the efficiency of the concentrated solar power (CSP) plants, with lower environmental impact, is of great interest. This work reports the development of nanofluids, a colloidal suspension of nanomaterials in a fluid, based on an environment-friendly base fluid for improving the performance of the heat transfer process in CSP plants.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Colour Science and Textile Chemistry Research Center, College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China.
Superhydrophobic fabrics suffer from being commonly penetrated by moisture after laundering, seriously deteriorating their water repellency after air drying. Numerous researchers have successfully recovered superhydrophobicity by drying in fluid ovens; however, high energy consumption and equipment dependence limit practical applications. Herein, the superhydrophobic photothermal self-healing cotton fabric (SPS cotton fabric) was fabricated by depositing a composite layer of cellulose nanocrystal-MXene (C-MXene) and polyacrylate (PA) coatings on the cotton cloth.
View Article and Find Full Text PDFRadiat Environ Biophys
January 2025
Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran.
Mechanistic Monte Carlo simulations have proven invaluable in tackling complex challenges in radiobiology, for example for protecting astronauts from solar particle events (SPEs) during deep space missions which remains an underexplored area. In this study, the Geant4-DNA Monte Carlo code was used to assess the DNA damage caused by SPEs and evaluate the protective effectiveness of a multilayer shelter. By examining the February 1956 and October 1989 SPEs-two extreme cases-the results showed that the proposed shelter reduced DNA damage by up to 57.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
College of Physics, Liaoning University, Shenyang 110036, China.
Based on the DCV-C system of fullerene acceptor organic solar cell active materials, the charge transfer process of D-A type molecular materials under the action of an external electric field () was explored. Within the range of electric field application, the excited state characteristics exhibit certain regular changes. Based on reducing the excitation energy, the excitation mode shows a trend of developing toward low excited states.
View Article and Find Full Text PDFAstrobiology
January 2025
Experimental Biophysics and Space Sciences, Department of Physics, Freie Universitaet Berlin, Berlin, Germany.
The (PSS) experiment was part of the European Space Agency's mission and was conducted on the International Space Station from 2014 to 2016. The PSS experiment investigated the properties of montmorillonite clay as a protective shield against degradation of organic compounds that were exposed to elevated levels of ultraviolet (UV) radiation in space. Additionally, we examined the potential for montmorillonite to catalyze UV-induced breakdown of the amino acid alanine and its potential to trap the resulting photochemical byproducts within its interlayers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!