Immunoglobulin (Ig) A controls host-microbial homeostasis in the gut. IgA recognition of beneficial bacteria is decreased in acutely undernourished children, but the factors driving these changes in IgA targeting are unknown. Child undernutrition is a global health challenge that is exacerbated by poor sanitation and intestinal inflammation. To understand how nutrition impacts immune-microbe interactions, we used a mouse model of undernutrition with or without fecal-oral exposure and assessed IgA-bacterial targeting from weaning to adulthood. In contrast to healthy control mice, undernourished mice fail to develop IgA recognition of intestinal Lactobacillus. Glycan-mediated interactions between Lactobacillus and host antibodies are lost in undernourished mice due to rapid bacterial adaptation. Lactobacillus adaptations occur in direct response to nutritional pressure, independently of host IgA, and are associated with reduced mucosal colonization and with bacterial mutations in carbohydrate processing genes. Together these data indicate that diet-driven bacterial adaptations shape IgA recognition in the gut.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chom.2020.03.012 | DOI Listing |
Immunology
January 2025
Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan.
Enterovirus A71 (EV-A71) has caused hand, foot, and mouth disease with an increased prevalence of neurological complications and acute mortality, threatening young children around the globe. By provoking mucosal immunity, intranasal vaccination has been suggested to prevent EV-A71 infection. However, antigens delivered via the nasal route usually fail to induce a protective memory response.
View Article and Find Full Text PDFFront Immunol
January 2025
Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.
Background: Despite its proven effectiveness and safety, there are limited real-world data on CoronaVac's immunogenicity in children, especially in lower-income countries, particularly for SARS-CoV-2 variants. We present a real-world study evaluating CoronaVac's immunogenicity in Colombian children stratified by previous exposure to this virus.
Methods: 89 children aged 3-11 years were enrolled (50 Non-Exposed and 39 Exposed).
Front Immunol
December 2024
Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
Throughout the COVID-19 pandemic, the emergence of new viral variants has challenged public health efforts, often evading antibody responses generated by infections and vaccinations. This immune escape has led to waves of breakthrough infections, raising questions about the efficacy and durability of immune protection. Here we focus on the impact of SARS-CoV-2 Delta and Omicron spike mutations on ACE-2 receptor binding, protein stability, and immune response evasion.
View Article and Find Full Text PDFNat Microbiol
January 2025
Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, USA.
Inflammatory bowel disease is associated with several genetic risk loci. Loss-of-function mutation in the α1,2-fucosyltransferase (fut2) gene, which alters fucosylation on the surface of intestinal epithelial cells, is one example. However, whether bacterial fucosylation can contribute to gut inflammation is unclear.
View Article and Find Full Text PDFFront Vet Sci
November 2024
State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China.
Background: Dogs are definitive hosts of , with the small intestine being the only site of parasitic infections. However, the immunomodulatory processes that occur during interactions between and its definitive host remain unclear. Therefore, this study aimed to evaluate gene transcription patterns in canine small intestinal epithelial cells (CIECs) following stimulation by protoscoleces (PSCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!