Differentiating Double-Layer, Pseudocapacitance, and Battery-like Mechanisms by Analyzing Impedance Measurements in Three Dimensions.

ACS Appl Mater Interfaces

Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.

Published: April 2020

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c05507DOI Listing

Publication Analysis

Top Keywords

differentiating double-layer
4
double-layer pseudocapacitance
4
pseudocapacitance battery-like
4
battery-like mechanisms
4
mechanisms analyzing
4
analyzing impedance
4
impedance measurements
4
measurements three
4
three dimensions
4
differentiating
1

Similar Publications

Weakening Coulomb interactions in ionic liquid via hydrogen bonds enables ultrafast supercapacitors.

J Colloid Interface Sci

January 2025

Shanxi Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049 China. Electronic address:

The application of ionic liquid electrolytes in ultrafast supercapacitors to achieve wide electrochemical operating windows and high electrochemical stability is highly applauded. However, the strong Coulomb interaction between ions leads to the overscreening effect and slow establishment process of the electrical double layer (EDL), which deteriorates the rate performance of supercapacitors. Herein, inspired by Coulomb's law and EDL transient dynamics, we introduce competitive hydrogen bond interactions into typical ionic-liquid electrolytes to weaken the Coulomb interaction between ions.

View Article and Find Full Text PDF

The aim of this study was to reveal the mechanism of cold stimulation (CS)-bronchial epithelial cells (BECs) derived exosomes (CS-BECs-exo) aggravated sepsis induced acute lung injury (SALI). CS-BECs-exo were separated by differential centrifugation and were characterized. Proteomics, immunoprecipitation, and RAGE knockout (RAGE) mice were used to investigate the mechanism of CS-BECs-exo aggravated SALI.

View Article and Find Full Text PDF

Structure and property exploration of two-dimensional, bulk, and cluster lithium sulfide using the IMODE method.

Phys Chem Chem Phys

December 2024

Zhejiang Provincial Key Laboratory of Carbon Materials, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.

Lithium sulfide (LiS) plays an important role in fields such as energy, environment and semiconductors. Exploration of the microstructure of LiS has significant implications for developing new materials and optimizing related material properties. In this work, the inverse design of materials by the multi-objective differential evolution (IMODE) method combined with density functional theory (DFT) calculations was used to predict the two-dimensional (2D), three-dimensional (3D), and cluster structures of LiS.

View Article and Find Full Text PDF

This work presents a facile and systematic way to prepare low resistive proton conducting biopolymer electrolyte (BPE) membranes from flaxseed gum (FG) via the solution casting technique. Ammonium fluoride (NHF) ionic salt has been added to the FG matrix and optimized the ionic conductivity of the BPE membrane. The structural and morphological investigations were done to comprehend the ion association phenomenon.

View Article and Find Full Text PDF

The dynamics of electro-osmotically generated flow of biological viscoelastic fluid in a cylindrical geometry are investigated in this paper. This flux is the result of walls contracting and relaxing sinusoidally in a magnetic environment. The blood's viscoelasticity and shear-thinning viscosity are the primary causes of its non-Newtonian characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!