A novel approach modifying cells to express viral markers to elicit protective immunity responses (decoy cellular vaccination) in the prevention of COVID-19 disease is currently being explored. Our approach entails utilizing SARS-CoV-2 Spike antigen-expressing, non-replicating cells as carriers and presenters of immunogenic antigens, so called "I-cells". By using irradiated cells as presenting vehicles of SARS-CoV-2 viral antigens(s) in a cellular context, these presented viral proteins can be recognized by the host immune system, thus, an efficient protective immune response might be elicited. Another advantage of this strategy is that the manufacturing process is scalable and yields uniform cell products allowing for "off-the-shelf" frozen supply availability. To prevent engraftment and proliferation of the cells after administration, the cells will be irradiated post-harvesting abolishing in vivo replication potential. Specifically, immunoreactive Spike-1 proteins from SARS-CoV-2 are expressed on the surface of irradiated target I-cells. Utilizing this innovative strategy, these viral antigen-displaying decoy cells will be developed as a vaccine to protect against COVID-19 disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144842PMC
http://dx.doi.org/10.1016/j.medidd.2020.100026DOI Listing

Publication Analysis

Top Keywords

decoy cellular
8
covid-19 disease
8
cells will
8
cells
7
novel decoy
4
cellular vaccine
4
vaccine strategy
4
strategy utilizing
4
utilizing transgenic
4
transgenic antigen-expressing
4

Similar Publications

The Effector Protease FgTPP1 Suppresses Immune Responses and Facilitates Fusarium Head Blight Disease.

Mol Plant Microbe Interact

January 2025

USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, Indiana, United States;

Most plant pathogens secrete effector proteins to circumvent host immune responses, thereby promoting pathogen virulence. One such pathogen is the fungus , which causes Fusarium Head Blight (FHB) disease on wheat and barley. Transcriptomic analyses revealed that expresses many candidate effector proteins during early phases of the infection process, some of which are annotated as proteases.

View Article and Find Full Text PDF

Corneal neovascularization (CorNV) develops under various pathological conditions and is one of the main causes of blindness. Due to that CorNV progression involves multiple steps, anti-vascular endothelial growth factor (VEGF) drugs alone could not sufficiently suppress this process, highlighting an urgent need for an efficient delivery system for the multi-step management of CorNV. In this study, a neutrophil nanovesicle-based eye drop (NCCR) is developed for CorNV therapy that simultaneously inhibits angiogenesis and inflammation, while eliminating pathological cells through chemoexcited photodynamic therapy (PDT).

View Article and Find Full Text PDF

Glucocorticoid excess causes bone loss due to decreased bone formation and increased bone resorption; miR-433-3p is a miRNA that negatively regulates bone formation in male mice by targeting Runx2 as well as RNAs involved in Wnt, protein kinase A and endogenous glucocorticoid signaling. To examine the impact of miR-433-3p on glucocorticoid-mediated bone loss, transgenic mice expressing a miR-433-3p tough decoy inhibitor in the osteoblast lineage were administered prednisolone via slow-release pellets. Bone loss was greater in control mice treated with prednisolone compared with miR-433-3p tough decoy mice due to higher osteoclast activity in the controls.

View Article and Find Full Text PDF

Post-Docking Refinement of Peptide or Protein-RNA Complexes Using Thermal Titration Molecular Dynamics (TTMD): A Stability Insight.

J Chem Inf Model

January 2025

Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy.

RNA-protein interactions drive and regulate fundamental cellular processes like transcription and translation. Despite being still limited, the growing body of structural data significantly contributes to the characterization of these interactions. However, RNA complexes involving proteins or peptides are not always available due to the structural determination challenges that this biopolymer entails.

View Article and Find Full Text PDF

Unlabelled: Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide. Currently, there are no targeted antivirals for the treatment of HuNoV infection. Histo-blood group antigens (HBGAs) on the intestinal epithelium are cellular attachment factors for HuNoVs; molecules that block the binding of HuNoVs to HBGAs thus have the potential to be developed as antivirals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!