Molecular Characteristics, Functions, and Related Pathogenicity of MERS-CoV Proteins.

Engineering (Beijing)

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China.

Published: October 2019

AI Article Synopsis

  • * New cases of MERS-CoV continue to emerge despite ongoing public health measures; hence, there's a critical need for better understanding of the virus and enhanced strategies for prevention and treatment.
  • * The review discusses MERS-CoV proteins, potential strategies to combat outbreaks, and emphasizes the integration of computational biology and virology to develop new peptide therapeutics and improve MERS elimination efforts.

Article Abstract

Middle East respiratory syndrome (MERS) is a viral respiratory disease caused by a coronavirus-MERS-CoV-that is associated with high mortality. However, the mechanism by which MERS-CoV infects humans remains unclear. To date, there is no effective vaccine or antibody for human immunity and treatment, other than the safety and tolerability of the fully human polyclonal Immunoglobulin G (IgG) antibody (SAB-301) as a putative therapeutic agent specific for MERS. Although rapid diagnostic and public health measures are currently being implemented, new cases of MERS-CoV infection are still being reported. Therefore, various effective measures should be taken to prevent the serious impact of similar epidemics in the future. Further investigation of the epidemiology and pathogenesis of the virus, as well as the development of effective therapeutic and prophylactic anti-MERS-CoV infections, is necessary. For this purpose, detailed information on MERS-CoV proteins is needed. In this review, we describe the major structural and nonstructural proteins of MERS-CoV and summarize different potential strategies for limiting the outbreak of MERS-CoV. The combination of computational biology and virology can accelerate the advanced design and development of effective peptide therapeutics against MERS-CoV. In summary, this review provides important information about the progress of the elimination of MERS, from prevention to treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7104727PMC
http://dx.doi.org/10.1016/j.eng.2018.11.035DOI Listing

Publication Analysis

Top Keywords

mers-cov proteins
8
development effective
8
mers-cov
7
molecular characteristics
4
characteristics functions
4
functions pathogenicity
4
pathogenicity mers-cov
4
proteins middle
4
middle east
4
east respiratory
4

Similar Publications

Betacoronaviruses express a small internal (I) protein that is encoded by the same subgenomic RNA (sgRNA) as the nucleocapsid (N) protein. Translation of the +1 reading frame of the N sgRNA through leaky ribosomal scanning leads to expression of the I protein. The I protein is an accessory protein reported to evade host innate immune responses during coronavirus infection.

View Article and Find Full Text PDF

The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions.

View Article and Find Full Text PDF

Traditional Chinese medicine has unique advantages in preventing and treating COVID-19, and Fuzheng Jiedu decoction (FZJDD) was reported to be effective against COVID-19 in clinical trials. To investigate the potential mechanisms and material basis of FZJDD against SARS-CoV-2, we performed SARS-CoV-2 target protein inhibition analyses and a metabolite full spectrum analysis of FZJDD. Interestingly, FZJDD was found to block the binding of SARS-CoV-2 Spike protein with the receptor ACE2 and inhibit the activity of SARS-CoV-2 3CLpro.

View Article and Find Full Text PDF

CRTC3 restricts SARS-CoV-2 replication and is antagonized by CREB.

Virol Sin

December 2024

Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China. Electronic address:

Virus-encoding RNA-dependent RNA polymerase (RdRp) is essential for genome replication and gene transcription of human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We previously identified the interaction between the catalytic subunit NSP12 of SARS-CoV-2 RdRp and the host protein CREB-regulated transcription coactivator 3 (CRTC3), a member of the CRTC family that regulates cyclic AMP response element-binding protein (CREB)-mediated transcriptional activation. Currently, the implication of CRTC3 in the pathogenesis of HCoVs is poorly understood.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) has been a global pandemic affecting millions of people's lives, which has led to 'post-COVID-19 fatigue'. Alarmingly, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) not only infects the lungs but also influences the heart and brain. Endothelial cell dysfunction and hypercoagulation, which we know occur with this infection, lead to thrombo-inflammation that can manifest as many myriad cardio-cerebrovascular disorders, such as brain fog, fatigue, cognitive dysfunction, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!