Ribavirin is an antiviral compound widely used in Hepatitis C Virus therapy. Biotransformation of this nucleoside analogue using ATCC 12407 as biocatalyst is herein reported. Reaction parameters such as microorganism amounts, substrate ratio and temperature were optimized reaching conversion yields of 86%. Biocatalyst stability was enhanced by immobilization in agarose matrix. This immobilized biocatalyst was able to be reused for more than 270 h and could be stored during more than 4 months without activity loss. Batch and packed-bed reactors based on a stabilized biocatalyst were assayed for bioprocess scale-up. A continuous sustainable bioprocess was evaluated using a prototype packed-bed reactor, which allowed to produce 95 mg of ribavirin. Finally, in this work an efficient green bioprocess for ribavirin bioproduction using a stabilized biocatalyst was developed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7108421 | PMC |
http://dx.doi.org/10.1016/j.procbio.2015.03.015 | DOI Listing |
Dalton Trans
January 2025
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, 73000 Lanzhou, China.
Hydrogen peroxide, phenols, amines, aldehydes, and other substances can easily damage intracellular biomacromolecules. Although natural peroxidases can convert these harmful substances into benign ones, the high costs, poor stabilities, and stringent application conditions associated with these enzymes necessitate the exploration of artificial mimics. In this study, Ce-doped MIL-101(Fe)-NH and MIL-101(Fe)-NO were synthesized with varying compositions a solvothermal method.
View Article and Find Full Text PDF3 Biotech
January 2025
School of Engineering and Sciences, Tecnologico de Monterrey, Campus Querétaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico.
Skin aging is characterized by progressive loss of functionality and regenerative potential of the skin, resulting in the appearance of wrinkles, irregular pigmentation, a decrease of elasticity, dryness, and rough texture. Damage to the skin caused by oxidative stress could substantially be slowed down by the use of phytochemicals that function as natural antioxidants. Although phytochemicals have immense potential as anti-aging medicines, their effectiveness as therapeutic agents is restricted by their poor solubility, biodistribution, stability, and hydrophilicity.
View Article and Find Full Text PDFRSC Chem Biol
December 2024
SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick Ireland
Small, stable biomedicines, like peptides and hormones, are already available on the market as spray dried formulations, however large biomolecules like antibodies and therapeutic enzymes continue to pose stability issues during the process. Stresses during solid-state formation are a barrier to formulation of large biotherapeutics as dry powders. Here, we explore an alternative avenue to protein stabilisation during the spray drying process, moving away from the use of excipients.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Clinical Pharmacology, Faculty of Medicine, Sohag University, Sohag, Egypt.
Background And Objective: Insulin resistance is a primary feature of type 2 diabetes. This study compared the effects of curcumin and its nanoformulation on insulin resistance, fasting blood sugar, liver function, GLUT4, lipid profile, and oxidative stress in the liver and pancreas in a diabetic model.
Methods: Thirty male Wistar rats were divided into five groups: a control group, a diabetic group, a diabetic group treated with metformin (40 mg/kg), a diabetic group treated with curcumin (100 mg/kg), and a diabetic group treated with curcumin NPs (100 mg/kg).
Genes Dis
March 2025
Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China.
The tumor microenvironment is a complex environment comprising tumor cells, non-tumor cells, and other critical non-cellular components. Some studies about tumor microenvironment have recently achieved remarkable progress in tumor treatment. As a substantial part of post-translational protein modification, ubiquitination is a crucial player in maintaining protein stability in cell signaling, cell growth, and a series of cellular life activities, which are also essential for regulating tumor cells or other non-tumor cells in the tumor microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!