A probabilistic approach to incorporating domain knowledge for closed-room people monitoring.

Signal Process Image Commun

Division of Information Engineering, School of Electrical & Electronic Engineering, Block S1, Nanyang Avenue, Nanyang Technological University, Singapore.

Published: November 2004

We propose a novel probabilistic approach to recognizing people entering and leaving a closed room in human work place or living environment. Specifically, people in the view of a monitoring camera are first tracked and represented using low-level color features. Based on a new color similarity measure, optimal recognition of people leaving and entering the room is carried out by probabilistic reasoning under the constraints imposed by the domain knowledge, e.g., a person currently inside a room cannot enter again without first leaving it, and vice versa. The novelty of our work mainly lies in the development of a systematic way to incorporate the correlation and constraint among a sequence of people observations, and the optimality of recognition is achieved by maximizing a joint posterior probability of the observations. Experimental results of real and synthetic data are presented to show the efficacy of the proposed approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126007PMC
http://dx.doi.org/10.1016/j.image.2004.07.001DOI Listing

Publication Analysis

Top Keywords

probabilistic approach
8
domain knowledge
8
people
5
approach incorporating
4
incorporating domain
4
knowledge closed-room
4
closed-room people
4
people monitoring
4
monitoring propose
4
propose novel
4

Similar Publications

Cumulative risk assessment is significant for evaluating the combined exposure to multiple substances, but its widespread acceptance and application have been limited due to the complexity of clarifying and assessing actual exposure. In this study, we conducted a cumulative risk assessment based on hazard-driven criteria to evaluate the co-exposure to elemental contaminants in the diet of the population in Chongqing Municipality. The cumulative risk was calculated and evaluated using Monte Carlo modeling and the modified Reference Point Index (mRPI) method.

View Article and Find Full Text PDF

The lexicon is an evolving symbolic system that expresses an unbounded set of emerging meanings with a limited vocabulary. As a result, words often extend to new meanings. Decades of research have suggested that word meaning extension is non-arbitrary, and recent work formalizes this process as cognitive models of semantic chaining whereby emerging meanings link to existing ones that are semantically close.

View Article and Find Full Text PDF

Conventional scanned optical coherence tomography (OCT) suffers from the frame rate/resolution tradeoff, whereby increasing image resolution leads to decreases in the maximum achievable frame rate. To overcome this limitation, we propose two variants of machine learning (ML)-based adaptive scanning approaches: one using a ConvLSTM-based sequential prediction model and another leveraging a temporal attention unit (TAU)-based parallel prediction model for scene dynamics prediction. These models are integrated with a kinodynamic path planner based on the clustered traveling salesperson problem to create two versions of ML-based adaptive scanning pipelines.

View Article and Find Full Text PDF

Neurophysiological data augmentation for EEG-fNIRS multimodal features based on a denoising diffusion probabilistic model.

Comput Methods Programs Biomed

January 2025

College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, PR China; Shanghai Yangpu Mental Health Center, Shanghai, 200093, PR China. Electronic address:

Background And Objective: The hybrid brain computer interfaces (BCI) combining electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) have attracted extensive attention for overcoming the decoding limitations of the single-modality BCI. With the deepening application of deep learning approaches in BCI systems, its significant performance improvement has become apparent. However, the scarcity of brain signal data limits the performance of deep learning models.

View Article and Find Full Text PDF

Many population surveys do not provide information on respondents' residential addresses, instead offering coarse geographies like zip code or higher aggregations. However, fine resolution geography can be beneficial for characterizing neighbourhoods, especially for relatively rare populations such as immigrants. One way to obtain such information is to link survey records to records in auxiliary databases that include residential addresses by matching on variables common to both files.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!