A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterisation and analysis of indoor tornado for contaminant removal and emergency ventilation. | LitMetric

Characterisation and analysis of indoor tornado for contaminant removal and emergency ventilation.

Build Environ

School of Engineering, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia.

Published: October 2019

As an essential emergency management strategy, innovative emergency ventilation schemes that can quickly remove infectious and fatal contaminants without further spreading are highly demanded for public and commercial buildings. This study numerically investigated a vortex flow driven ventilation in a model room to explore the dynamic characteristics and 3D visualisation of vortex-driven indoor tornados. Four approaches to identify the core region of the indoor tornado were developed and compared against each other. By successfully capturing the continuously changing centre of the vortex and significant core region size variations at different heights, the swirl vector method was recommended as a quantifiable approach to identify the core region of indoor tornados. The numerical outcomes also revealed a strong connection between the lift angle, vortex intensity, overall size of indoor tornado and maximum size of core region. The best contaminants control and removal was achieved at lift angle of 20° in this study and an optimum lift angle ranging from 10° to 20° was recommended for future study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116992PMC
http://dx.doi.org/10.1016/j.buildenv.2019.106345DOI Listing

Publication Analysis

Top Keywords

core region
16
indoor tornado
12
lift angle
12
emergency ventilation
8
indoor tornados
8
identify core
8
region indoor
8
indoor
5
characterisation analysis
4
analysis indoor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!