It is not clear whether turning on the gaspers in the cabins of commercial airliners actually improves the air quality. To answer this question, this study first developed a hybrid turbulence model which was suitable for predicting the air distribution in an aircraft cabin with gaspers turned on. Next, the investigation validated the model using two sets of experimental data from a cabin mockup and an actual airplane. This study then used the validated model to systematically investigate the impact of gaspers on cabin air quality in a seven-row section of the fully-occupied, economy-class cabin of Boeing 767 and 737 airplanes. The CFD calculations formed a database consisting of 9660 data points that provide information about SARS infection risk. It was found that the distribution of opened gaspers can influence the infection risk for passengers. Even though the gasper supplies clean air, it is possible for it to have a negative impact on the passengers' health. Statistically speaking, the overall effect of turning on the gaspers on the mean infection risk for the general population was neutral.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117005 | PMC |
http://dx.doi.org/10.1016/j.buildenv.2016.10.018 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
This research investigates the interactive effects of elevated ozone (eO) and carbon dioxide (eCO) on stomatal morphology and leaf anatomical characteristics in two wheat cultivars with varying O sensitivities. Elevated O increased stomatal density and conductance, causing oxidative stress and cellular damage, particularly in the O-sensitive cultivar PBW-550 (PW), compared to HUW-55 (HW). Conversely, eCO reduced stomatal density and pore size, mitigating O-induced damage by limiting O influx.
View Article and Find Full Text PDFBiomed Microdevices
January 2025
Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Suwannabhumi Canal Rd, Bang Pla, Bang Phli District, Samut Prakan, 10540, Thailand.
Microfluidic chips often face challenges related to the formation and accumulation of air bubbles, which can hinder their performance. This study investigated a bubble trapping mechanism integrated into microfluidic chip to address this issue. Microfluidic chip design includes a high shear stress section of fluid flow that can generate up to 2.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, 13084-971, SP, Brazil. Electronic address:
Background: Distinct classes of environmental contaminants - such as microplastics, volatile organic compounds, inorganic gases, hormones, pesticides/herbicides, and heavy metals - have been continuously released into the environment from different sources. Anthropogenic activities with unprecedented consequences have impacted soil, surface waters, and the atmosphere. In this scenario, developing sensing materials and analytical platforms for monitoring water and air quality is essential to supporting worldwide environmental control agencies.
View Article and Find Full Text PDFEnviron Int
January 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
The rapid urbanization in China has brought about serious air pollution problems, which are likely to persist for a considerable period as the urbanization process continues. In urban areas, the spatial distribution of air pollutants represented by PM has been proved mainly affected by emission, urban landscape pattern (short as ULP), as well as meteorological conditions. However, the contributions of these factors can seriously vary with different periods of urban development.
View Article and Find Full Text PDFEnviron Int
January 2025
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Joint International Research Laboratory of Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
Estimating PM exposure and its health impacts in cities involves large uncertainty due to the limitations of model resolutions. Consequently, attributing the sources of PM-related health impacts at the city level remains challenging. We characterize the health impacts associated with chronic PM exposure and anthropogenic emissions in Shanghai using a chemical transport model (GEOS-Chem) and its adjoint.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!