A novel natural rubber/silica (NR/SiO) nanocomposite is developed by combining self-assembly and latex-compounding techniques. The results show that the SiO nanoparticles are homogenously distributed throughout NR matrix as nano-clusters with an average size ranged from 60 to 150 nm when the SiO loading is less than 6.5 wt%. At low SiO contents (⩽4.0 wt%), the NR latex (NRL) and SiO particles are assembled as a core-shell structure by employing poly (diallyldimethylammonium chloride) (PDDA) as an inter-medium, and only primary aggregations of SiO are observed. When more SiO is loaded, secondary aggregations of SiO nanoparticles are gradually generated, and the size of SiO cluster dramatically increases. The thermal/thermooxidative resistance and mechanical properties of NR/SiO nanocomposites are compared to the NR host. The nanocomposites, particularly when the SiO nanoparticles are uniformly dispersed, possess significantly enhanced thermal resistance and mechanical properties, which are strongly depended on the morphology of nanocomposites. The NR/SiO has great potential to manufacture medical protective products with high performances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7127559 | PMC |
http://dx.doi.org/10.1016/j.compscitech.2007.04.016 | DOI Listing |
Chemosphere
January 2025
Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong Province, China. Electronic address:
Recent studies have raised concerns about the potential toxicity of amorphous silica (SiO) nanoparticles (NPs). This investigation explores the uptake, transport, and transpiration of silica NPs in Apium graveolens var. secalinum.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania.
This study investigates the synthesis of ZnSnO@SiO@5-FU nanoparticles as an additive for bone fillers in dental maxillofacial reconstruction. ZnSnO nanoparticles were synthesized and coated with a SiO shell, followed by the incorporation of 5-Fluorouracil (5-FU), aimed at enhancing the therapeutic properties of classical fillers. Structural analysis using X-ray diffraction confirmed that ZnSnO was the single crystalline phase present, with its crystallinity preserved after both SiO coating and 5-FU incorporation.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Fujian Special Equipment Inspection and Research Institute, Fuzhou 350008, China.
The escalating demand for sustainable materials has been fueling the rapid proliferation of the biopolymer market. Biodegradable polymers within natural habitats predominantly undergo degradation mediated by microorganisms. These microorganisms secrete enzymes that cleave long-chain polymers into smaller fragments for metabolic assimilation.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an 710021, China.
This study introduces a novel water-insoluble dispersant for coal water slurry (CWS), namely, a poly(sodium styrene sulfonate)- SiO nanoparticle (SiO--PSSNa). SiO--PSSNa was synthesized by combining the surface acylation reaction with surface-initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrometer (EDS), nuclear magnetic resonance spectroscopy (NMR) and thermogravimetric analysis (TGA) verified that SiO--PSSNa with the desired structure was successfully obtained.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.
Emulsion interface engineering has been widely employed for the synthesis of nanomaterials with various morphologies. However, the instability of the liquid-liquid interface and uncertain interfacial interactions impose significant limitations on controllable fabrications. Here, we developed a liquid-nano-liquid interface-oriented anisotropic encapsulation strategy for fabricating asymmetric nanohybrids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!