Polysubstituted pyrimidinylphosphonic and 1,3,5-triazinylphosphonic acids with potential biological properties were prepared in high yields by the microwave-assisted Michaelis-Arbuzov reaction of trialkyl phosphite with the corresponding halopyrimidines and halo-1,3,5-triazines, respectively, followed by the standard deprotection of the phosphonate group using TMSBr in acetonitrile. 4,6-Diamino-5-chloropyrimidin-2-ylphosphonic acid () was found to exhibit a weak to moderate anti-influenza activity (28-50 μM) and may represent a novel hit for further SAR studies and antiviral improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7125588PMC
http://dx.doi.org/10.1016/j.tet.2011.11.040DOI Listing

Publication Analysis

Top Keywords

biological properties
8
135-triazinylphosphonic acids
8
efficient microwave-assisted
4
microwave-assisted synthesis
4
synthesis biological
4
properties polysubstituted
4
polysubstituted pyrimidinyl-
4
pyrimidinyl- 135-triazinylphosphonic
4
acids polysubstituted
4
polysubstituted pyrimidinylphosphonic
4

Similar Publications

The Crimean Congo virus has been reported to be a part of the spherical RNA-enveloped viruses from the Bunyaviridae family. Crimean Congo fever (CCHF) is a fatal disease with having fatality rate of up to 40%. It is declared endemic by the World Health Organization.

View Article and Find Full Text PDF

Natural honey is enriched with essential and beneficial nutrients. This study aimed to investigate the melliferous flora microscopic techniques and assess the biochemical properties of honey. Flavonoid and phenolic contents in honey samples were analyzed via colorimetric and Folin-Ciocalteu methods and the alpha-amylase, reducing power, and minerals using Pull's and spectroscopy methods.

View Article and Find Full Text PDF

Refining minimal engineered receptors for specific activation of on-target signaling molecules.

Sci Rep

December 2024

Laboratory of Cell Vaccine, Microbial Research Center for Health and Medicine (MRCHM), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki-Shi, Osaka, 567-0085, Japan.

Since designer cells are attracting much attention as a new modality in gene and cell therapy, it would be advantageous to develop synthetic receptors that recognize artificial ligands and activate solely signaling molecules of interest. In this study, we refined the construction of our previously developed minimal engineered receptors (MERs) to avoid off-target activation of STAT5 while maintaining on-target activation of signaling molecules corresponding to tyrosine motifs. Among the myristoylated, cytoplasmic, and transmembrane types of MERs, the cytoplasmic type had the highest signaling efficiency, although there was off-target activation of STAT5 upon ligand stimulation.

View Article and Find Full Text PDF

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

Fast and sensitive multivalent spatial pattern-recognition for circular RNA detection.

Nat Commun

December 2024

Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China.

While circular RNAs (circRNAs) exhibit lower abundance compared to corresponding linear RNAs, they demonstrate potent biological functions. Nevertheless, challenges arise from the low concentration and distinctive structural features of circRNAs, rendering existing methods operationally intricate and less sensitive. Here, we engineer an intelligent tetrahedral DNA framework (TDF) possessing precise spatial pattern-recognition properties with exceptional sensing speed and sensitivity for circRNAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!